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Abstract
In cavity optomechanics, nonlinear interactions between an optical field and a mechanical
resonator mode enable a variety of unique effects in classical and quantum measurement and
information processing. Here, we describe nonlinear optomechanical coupling in the
membrane-in-the-middle (MIM) system in a way that allows direct comparison to the intrinsic
optomechanical nonlinearity in a standard, single-cavity optomechanical system. We find that the
enhancement of nonlinear optomechanical coupling in the MIM system as predicted by Ludwig
et al (2012 Phys. Rev. Lett. 109 063601) is limited to the degree of sideband resolution of the
system. Moreover, we show that the selectivity of the MIM system of nonlinear over linear
transduction has the same limit as in a single cavity system. These findings put constraints on the
experiments in which it is advantageous to use an MIM system. We discuss dynamical backaction
effects in this system and find that these effects per cavity photon are exactly as strong as in a single
cavity system, while allowing for reduction of the required input power. We propose using the
nonlinear enhancement and reduced input power in realistic MIM systems towards parametric
squeezing and heralding of phonon pairs, and evaluate the limits to the magnitude of both effects.

1. Introduction

Cavity optomechanics enables a wide variety of control over either optical or mechanical degrees of

freedom by exploiting radiation pressure interactions. Using an effectively linear optomechanical coupling,

many celebrated effects have been demonstrated, such as optical sideband cooling through dynamical

backaction [2, 3]. On the other hand, nonlinear optomechanical interaction has been recognised as a

potential resource to generate nonclassical optical and mechanical states [4, 5]. In particular, quadratic

optomechanical coupling, for which optical eigenmode frequencies scale with the square of mechanical

displacement, offers several quantum applications such as a phonon quantum non-demolition (QND)

measurements [6, 7], squeezing of optical and mechanical modes [8], the observation of phonon shot noise

[9], sub-Poissonian phonon lasing [10], controlled quantum-gate operations between flying optical or

stationary phononic qubits [11] and nonclassical state generation through measurement [12]. Additionally,

there are also classical applications, such as a two-phonon analogue of optomechanically-induced-

transparency [13]. Moreover, systems that feature quadratic coupling offer new ways to let mechanical

modes interact with quantum two-level systems [14, 15].

Even the simplest optomechanical systems, where a single cavity is parametrically coupled to a

mechanical resonator, feature nonlinear interaction between the optical and mechanical degrees of freedom

described by the Hamiltonian,

Ĥ = Ωmb̂†b̂ +
[
ωc − g0(b̂† + b̂)

]
â†â, (1)
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Figure 1. (a) The optomechanical MIM system, consisting of two coupled optical modes which both couple to one mechanical
resonator. Note the use of both ports for input and output. (b) Optical eigenfrequencies for varying oscillator position x.

where Ωm and ωc are the mechanical and optical mode frequencies, respectively, g0 is the single-photon

optomechanical coupling rate, â and b̂ are the optical and mechanical annihilation operator, respectively,
and we set � = 1 [16]. For nonlinear effects to be appreciable for quantum-level motion, however, one
requires the so-called single-photon strong coupling (SPSC) regime g0/κ > 1, where κ is the optical mode
decay rate [4, 5]. As this SPSC condition is inaccessible in solid-state optomechanical systems, most
experiments use large coherent optical fields that effectively linearise the nonlinear optomechanical
interaction. It was recognised that special forms of nonlinear optomechanics could be achieved in
multimode systems [1, 7, 17]. The so-called membrane-in-the-middle (MIM) system consists of two
cavities coupled through optical tunnelling at rate J. If a mechanical mode, e.g. that of a highly reflective
membrane that separates the two cavities, alters the cavity lengths with equal magnitude but opposite sign,
the frequencies of the optical supermodes depend on the square of displacement to lowest order. Such
quadratic coupling is described by terms ∝ (b̂† + b̂)2â†

s âs in the Hamiltonian, whose magnitude scales
inversely with J [7, 17]. Here âs (s = {e, o}) refers to one of the optical supermodes.

MIM systems were realised in Fabry–Perot cavities [7, 18], nanoscale platforms that include
ringresonators [19] and photonic crystals [20], ultracold atom systems [21] and levitated nanosphere
platforms [22]. The development of large quadratic optomechanical coupling has also inspired closely
related designs [23–25].

Although optomechanical interaction in the MIM system is often described by only the quadratic
interaction [8, 13, 26–29], it is generally an insufficient description. In addition to quadratic coupling, the
mechanical mode also creates linear cross-coupling between the two optical supermodes [30, 31], allowing
quantum vacuum fluctuations to excite the mechanical resonator and precluding phonon QND
measurements, that become limited to the SPSC condition [32]. Moreover, when the frequency splitting of
the optical supermodes is comparable to the mechanical frequency, i.e. 2J − Ωm � 2J, quadratic
optomechanical coupling is resonantly enhanced [1, 10, 11, 33–35], an effect which is also not captured in a
model in which quadratic coupling is explained through the interaction of a mechanical mode with a single
optical mode at an avoided crossing of optical supermodes (figure 1(b)). This picture is only applicable in
the regime where mechanical motion can be regarded as quasi-static, i.e. Ωm � 2J. A general description of
MIM system dynamics that extends beyond these constraints is still missing. Moreover, it is an open
question how strong quadratic coupling in the MIM system can be made to be, and how that compares to
the nonlinear interaction in a single cavity of similar size and optomechanical properties. Having such a
description is useful in determining how quadratic optomechanical coupling can be achieved in general
systems, for either quantum or classical applications, and to identify applications in the regime of weak
optomechanical coupling g0 < κ that is experimentally widely relevant.

In this work, we aim to provide an intuitive description of optomechanical dynamics of the MIM system
that is valid for arbitrarily small optical mode spacings and use it to describe its unique features and
limitations. We quantify the strength of linear and nonlinear processes through the amplitude of the
intracavity sidebands at ±Ωm and ±2Ωm, respectively, which give the strength of transduction of the
mechanical mode onto the optical field, but also determine the dynamical backaction effect [17]. These
classical amplitudes also provide useful information about the system in the quantum regime, as they are
related to measurement imprecision and quantum backaction [36]. We focus in particular on the regime
where motion-induced cavity frequency shifts are small compared to the optical linewidth, relevant to the
majority of current optomechanical systems and various applications of quadratic coupling [9, 10, 14, 15].
Next, we revisit the dynamical backaction that the mechanical resonator experiences. Our analysis
underlines that the apparent quadratic coupling in the MIM system is due to the intrinsic optomechanical
nonlinearity. In particular, we see that linear transduction (i.e. the ±Ωm sidebands) can not be entirely
suppressed and is related in size to quadratic (±2Ωm sidebands) transduction in the same way as in a single
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cavity system. Importantly, we show that the magnitude of the nonlinear enhancement, with respect to a
single (uncoupled) optomechanical cavity, for the optimal condition of 2J = Ωm is limited to the sideband
resolution 2Ωm/κ. By describing dynamical backaction with the same approach, we put previous results on
the optical spring shift and heating in an MIM system [20, 37] in a new perspective, the most critical point
being that the backaction per intracavity photon is equal in size in the two different systems. However, the
multimode nature of the MIM system can be exploited to reduce the input power significantly [38]. We
discuss a two-tone parametric driving scheme in an MIM system that also has a reduced threshold power
compared to a single cavity. Finally, we propose a scheme that exploits the enhanced nonlinearity in the
MIM system to herald nonclassical two-phonon states and works with a lower cavity occupation.

This paper is organised as follows. In section 2, we introduce our new description of MIM system
nonlinear dynamics and calculate analytical results for the linear and quadratic optical transduction
sidebands. We analyse these results in section 3 and trace out links with existing approaches to the
quasi-static (2J � Ωm) regime. We subsequently focus on the enhancement of nonlinear effects that is
expected in the resonant (2J ≈ Ωm) case and present new, general upper bounds for this nonlinearity. Next,
in section 4, we estimate dynamical backaction by calculating the optically-induced changes in the
mechanical response in the MIM system, following the approach in [17]. We revisit these calculations in the
light of our new picture of the MIM system and show that, in the case of a two-tone parametric driving
scheme, the MIM system can be exploited to reduce required driving power. In section 5, we present the use
of nonlinear enhancement towards heralded generation of phonon pairs. Finally, we discuss also how the
description of the MIM system in this paper might shed new light on quadratic coupling in general
optomechanical systems that are not limited to two high-finesse cavity modes.

2. Model and method

2.1. First and second order sidebands in a single cavity
We begin by revisiting the linear and intrinsic nonlinear optomechanical coupling that occurs in single
cavity optomechanical systems. The optical mode couples to an external field with rate κex. The mechanical
dissipation rate is Γm. Starting from the Hamiltonian of equation (1), moving to a frame rotating at the
laser drive frequency ωL and introducing the laser detuning Δ = ωL − ωc, the quantum
Heisenberg–Langevin equations of motion can be derived. These govern the dynamics of the operators in
the open quantum system [16] and read

˙̂a = −κ

2
â + i(Δ + g0x̂)â +

√
κexâin +

√
κ0 f̂ in, (2a)

˙̂x = 2 × Ωmp̂, (2b)

˙̂p = −Ωm

2
x̂ − Γmp̂ + g0â†â − F̂in

mΩmxzpf
+

√
ΓmP̂in, (2c)

where we have used the unitless mechanical position and momentum operators, x̂ = (b̂ + b̂†) and
p̂ = i(b̂† − b̂)/2, respectively. We have introduced âin, f̂ in, for the optical input fields through the external
channel and quantum fluctuations that drive the system and cause intrinsic decay, with rates κex and κ0,
respectively, fulfiling κ0 + κex = κ, where κ is the total decay rate. The field P̂in introduces mechanical
fluctuations associated with coupling to a thermal bath whereas F̂in accounts for coherent mechanical drive
fields (Ĥd = −x̂F̂in/(mΩmxzpf)). Also, xzpf ≡

√
1/(2mΩm) is the mechanical zero point motion for the

mechanical oscillator with effective mass m. In our calculations, we reduce these equations to the
semiclassical, nonlinear equations of motion in the mean-field approximation 〈x̂â〉 ≈ xa, denoting 〈â〉 = a
and 〈x̂〉 = x. Assuming no external mechanical forces (

〈
F̂in

〉
= 0) and incoherent (e.g., thermal) input

fluctuations, 〈Pin〉 = 0, 〈 fin〉 = 0, we arrive to:

ẍ = −Ω2
mx − Γmẋ + Ωmg0|a|2, (3a)

ȧ = i(Δ̃ + g0x)a +
√
κexain. (3b)

Here we, for convenience, absorbed the optical decay rate as an imaginary part of the complex detuning Δ̃:
κ = 2 Im(Δ̃).

In taking the mean-field approximation, our treatment does no longer take into account quantum
fluctuations in either the optical or mechanical modes, being formally valid within the classical regime.
However, some estimations can still be made regarding quantum-limited processes. In particular, when
inferring the mechanical position x̂ from a measurement of optical output field âout, shot noise
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fundamentally limits the available information about 〈x̂〉. The resulting measurement imprecision on x̂,
expressed as a displacement noise spectral density S̄imp

xx (ω), can be estimated by comparing the shot noise
spectral density to the classical signal at the optical output generated by transduction of coherent
mechanical motion [39], the latter of which can be calculated from the mean-field equations following our
treatment below. In addition, the imprecision-force inequality S̄imp

xx (ω) · S̄FF(ω) � �2/4 provides a lower
bound on the backaction force power spectral density S̄FF(ω), given the imprecision noise spectral density
S̄imp

xx (ω) [40], from which the magnitude of backaction on the mechanical resonator can be estimated. We
stress, however, that our equations can not be used to give general predictions for quantum dynamics, as
the mean field approximation breaks down for mechanical or optical states that can not be approximated as
large, coherent amplitudes and for g0/κ > 1, the condition hallmarking the SPSC regime.

The steady state solutions follow from setting ẍ, ȧ = 0 in equation (3a):

ā = i
√
κex

Δ̄
ain, (4a)

x̄ =
g0

Ωm
|ā|2. (4b)

Here, Δ̄ = Δ̃ + g0x̄, which still contains x̄. However, we will assume that the optical power is limited such
that the static displacement of the resonator is much smaller than the linewidth, g0x̄ � κ, such that Δ̄ ≈ Δ̃.
This sets an upper limit for a few 100 intracavity photons in photonic crystal cavities [41], while for other
systems it is much less restricting.

We will evaluate the optical sidebands created by coherent mechanical motion of a specific amplitude
X0, described by x = x̄ + X0 cos(Ωmt). This ansatz neglects mechanical damping by assuming Γm � Ωm.
For the optical field, we look for a perturbative solution of the form [33]:

a(t) = ā +
∑
ζ=±

A(1)
ζ eiζ�mt + A(2)

ζ eiζ2�mt . (5)

By collecting terms in the mean-field EOM with the same time dependence, we can solve for the first-order
coefficients:

A(1)
± =

g0ā

±Ωm − Δ̄

X0

2
. (6)

And, using this result, we can also retrieve second-order coefficients

A(2)
± =

g0A(1)
±

±2Ωm − Δ̄

X0

2
=

g2
0 ā

(±2Ωm − Δ̄)(±Ωm − Δ̄)

(
X0

2

)2

. (7)

In the approach we take above, the hierarchy of higher-order sidebands has been truncated assuming the
cavity resonance frequency shift resulting from mechanical motion is negligible compared to the optical
linewidth, i.e. g0x̄ < κ, in which case every higher-order sideband can be treated as a perturbation of the
previous. Indeed, various applications of quadratic coupling rely on this more practically reached coupling
regime [9, 10, 14, 15]. Because current optomechanical devices are not in the SPSC regime, the condition
g0x < κ holds for most devices, although this is not fulfiled by exceptions with large g0 and mechanical
amplitudes [36].

2.2. Interaction and sidebands in the MIM system
Having applied our approach to single cavities, we now move to the MIM system. Our starting point is the
standard Hamiltonian of the MIM system in the rotating frame of an input laser field detuned from two
optical modes by Re Δ̃i = ωL − ωc,i, with loss rates 2 Im Δ̃i = κi that are coupled to a single mechanical
membrane, displaced from the equilibrium position by x̂. In the basis of the physical cavities with
annihilation operators âi (i = {1, 2}) the system is governed by the Hamiltonian

Ĥ = Ωmb̂†b̂ + ĤOM + ĤJ +
∑

i

Ĥκi , (8)

where optomechanical coupling reads

ĤOM = −(Δ1 + g0,1x̂)â†
1â1 − (Δ2 − g0,2x̂)â†

2â2, (9)

and the optical inter-cavity coupling is characterized by

ĤJ = −J(â†
1â2 + â†

2â1), (10)
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where J is the rate of inter-cavity coupling. Coupling to input/output channels via Hamiltonians Ĥκi is
assummed to occur to separate environments, (e.g., single-mode waveguides) with rates κex,i. Because the
optical cavities are coupled, equation (8) can be expressed in terms of the optical supermodes that arise. In
conditions of equal cavity frequency Δ1 = Δ2 ≡ Δ, these are given by âe,o = (â1 ± â2)/

√
2. These

supermodes are also depicted in figure 1(a). Assuming equal optomechanical couplings g0,1 = g0,2 ≡ g0, the

system Hamiltonian in this basis reads Ĥ = Ωmb̂†b̂ +
∑

s=e,oωsâ†
s âs + ĤOM with ωe,o = −Δ ∓ J, with an

optomechanical interaction:
ĤOM = −g0x̂(â†

e âo + â†
oâe). (11)

Here, we want to emphasize the fact that optomechanical coupling has now become cross-mode, i.e. the
Hamiltonian contains terms ∝ x̂â†

e âo + H.c., whereas it previously contained self-mode terms, ∝ x̂â†
1â1,

x̂â†
2â2.
The frequencies of these optical supermodes can be found by treating this mechanical position as a

quasi-static parameter analogous to the Born–Oppenheimer approximation of molecular physics (x̂ �→ x).
This is only valid for mechanical motion that is slow with respect to the optical coupling rate, or J � Ωm,
which is not true for a number of experimental implementations [7, 19, 42]. Using this adiabatic
approximation allows for diagonalization of the system Hamiltonian in equation (8) [17], yielding the
x-dependent eigenfrequencies in figure 1(b). Still assuming equal frequency of both optical cavities, this
dependence is approximately quadratic and given by ωad.

e,o (x) ≈ −Δ ∓ (J + g(2)
0 x2), or, equivalently, the

effective quadratic coupling Hamiltonian

Ĥad. = −Δ
(
â†

e âe + â†
oâo

)
− (J + g(2)

0 x̂2)(â†
e âe − â†

oâo), (12)

with effective quadratic coupling g(2)
0 = g2

0/2J. Through the adiabatic approximation, the threefold
interaction that combines optical supermodes and the mechanical operator in equation (11) is thus reduced
to a pair of effectively quadratic interactions. Furthermore, by assuming one of the optical supermodes to
be off-resonant, the standard approach removes its effect completely, yielding an effective, quadratic
Hamiltonian that involves only a certain superposition of the cavity fields. It is this form of the Hamiltonian
that drew attention to the MIM system as a platform for strong quadratic optomechanical coupling. This
adiabatic limit, however, breaks down as optical Rabi oscillations occur at scales that compare with
mechanical oscillations, i.e. where the supermode splitting is resonant with the mechanical mode
(2J ≈ Ωm). In this limit, optical and mechanical degrees of freedom need to be treated on the same footing,
via numerical methods or effective Hamiltonians that are perturbative in g0/κ [43, 44]. Moreover, as
described in the introduction, it was quickly recognised that the effective Hamiltonian in equation (12) does
not fully describe the system, because the linear cross-mode coupling is no longer included [32, 45].

Our goal now is to provide a description of nonlinear dynamics in the MIM system that does not have
the shortcomings of the adiabatic approximation. To do so, we apply the same perturbative approach as
with the single cavity to the full model in equation (9). Our mean-field equations of motion are:

ẍ = −Ω2
mx − Γmẋ + Ωm(g0,1|a1|2 − g0,2|a2|2) +

Fin

mxxpf
, (13a)

ȧ1 = i(Δ̃1 + g0,1x)a1 + iJa2 +
√
κex, 1ain,1, (13b)

ȧ2 = i(Δ̃2 − g0,2x)a2 + iJa1 +
√
κex, 2ain,2. (13c)

Here the optical decay rates κi = 2 Im Δ̃i are included in the complex detunings Δ̃i. We have added the
term ∝ Fin =

〈
F̂in

〉
to represent external classical forces acting on the resonator, which will be of use later

on. We first find steady state values for a1, a2 and x:

ā1,2 = i
(Δ̄2,1ξ1,2 − Jξ2,1)

Δ̄1Δ̄2 − J2
, (14a)

x̄ =
g0,1|a1|2 − g0,2|a2|2

Ωm
. (14b)

Where Δ̄i = Δ̃i ± g0,ix̄ is the detuning to the cavity resonance that has been displaced by mean mechanical
position x̄ and incoming photon population ξi =

√
κex, iain,i. Similarly to the discussion of the single-cavity

intrinsic nonlinearity, we propose an ansatz

ai = āi +
∑
ζ=±

A(1)
i,ζ eiζ�mt + A(2)

i,ζ eiζ2�mt . (15)
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We then derive explicit expressions for the first-order coefficients,

A(1)
1,± =

(±Ωm − Δ̄2)g0,1ā1 − Jg0,2ā2

(±Ωm − Δ̄1)(±Ωm − Δ̄2) − J2

X0

2
, (16a)

A(1)
2,± = − (±Ωm − Δ̄1)g0,2ā2 − Jg0,1ā1

(±Ωm − Δ̄1)(±Ωm − Δ̄2) − J2

X0

2
, (16b)

as well as the second order coefficients

A(2)
1,+ =

(2Ωm − Δ̄2)g0,1A(1)
1,+ − Jg0,2A(1)

2,+
(2Ωm − Δ̄1)(2Ωm − Δ̄2) − J2

X0

2
, (17a)

A(2)
1,− =

(−2Ωm − Δ̄2)g0,1A(1)
1,+ − Jg0,2A(1)

2,+
(−2Ωm − Δ̄1)(−2Ωm − Δ̄2) − J2

X0

2
, (17b)

A(2)
2,+ = − (2Ωm − Δ̄1)g0,2A(1)

2,+ − Jg0,1A(1)
1,+

(2Ωm − Δ̄1)(2Ωm − Δ̄2) − J2

X0

2
, (17c)

A(2)
2,− = − (−2Ωm − Δ̄1)g0,2A(1)

2,+ − Jg0,1A(1)
1,+

(−2Ωm − Δ̄1)(−2Ωm − Δ̄2) − J2

X0

2
. (17d)

3. Optomechanical transduction

Having obtained the expressions for the sideband amplitudes for a given mechanical amplitude, we now
discuss these results in the context of mechanical transduction. We begin by retrieving the results of the
quasi-static model from our approach.

3.1. Recovering the quasi-static limit
Here, we impose the quasi-static limit (2J � Ωm) in the general solutions above and assume optical mode
splitting to be resolved in frequency (2J � κi). Without loss of generality, we drive the input of cavity 1
only, close to the even optical supermode, resulting in ā1 ≈ ā2 = ā according to equation (14), but such that
the 2Ωm sideband is on resonance, namely Re(Δ̄) = 2Ωm − J (see equation (17)). We will assume a
sideband resolved system with Ωm > κ, which is the more interesting regime for the MIM system, as we will
discuss later in subsection 3.3.

The quasi-static diagonalization shows that photonic eigenmodes acquire a dependence on x. For
κ1 �= κ2, this in addition yields an effective x-dependent supermode decay rate (also known as dissipative
coupling [45, 46]), leading to information about x̂ leaking from the cavity. In a similar but distinct effect,
the two optical supermodes also become coupled through their dissipation into the same optical channel
for κ1 �= κ2 [38, 45]. However, for clarity of our discussion, we will neglect both of these effects by
assuming identical optical cavities (g0,1 = g0,2 ≡ g0, Δ1 = Δ2 ≡ Δ, and κ1 = κ2 ≡ κ).

Under the conditions above, the relevant first-order sideband amplitudes reduce to

A(1)
1,+ =

g0

Ωm + J − Δ̄

āX0

2
= −A(1)

2,+. (18)

Here we see that this first sideband amplitude has a resonance only at the odd optical mode, or for
Re(Δ̄) = Ωm + J. Because this resonance frequency is far from the (even mode) input frequency (see
figure 2(a)), first sideband generation is suppressed. This is a signature of the inter-mode optomechanical
coupling between supermodes in equation (11): if the even mode is populated, the mechanical mode
scatters light from the carrier into the odd mode. In figure 2(a), we illustrate this situation. In our
perturbative picture, the second sidebands at ±2Ωm are seen as being scattered from the first sidebands by
the mechanical mode. Because of the cross-mode coupling the second sidebands are again in the even
mode. For our choice of detuning, this means the positive frequency second sideband is on resonance with
the even mode and has amplitude

A(2)
1,+ = A(2)

2,+ =
g0A(1)

1,+
2Ωm − J − Δ̄

X0

2
≈ g2

0

2J

a

−iκ/2

(
X0

2

)2

, (19)

which is depicted in figure 2(a). Note that a quadratic optomechanical interaction, which in practice
involves the adiabatic elimination of the supermode off-resonant with the input field (âo in this case), yields
the same result for the effective quadratic coupling as in the adiabatic diagonalisation (see equation (12)),
namely g(2)

0 = g2
0/2J. We conclude that our approach gives the correct quadratic coupling found in the
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Figure 2. Schematic depiction of the frequencies of input field, sidebands and optical modes. Blue and orange colour coding
indicate the even and odd optical modes, respectively. (a) In the adiabatic limit (2J � �m) and for driving of the even mode, the
first sideband (SB1) is far off resonance with the odd mode, while the second sideband (SB2) is on resonance with the even
mode. (b) Conversely, for 2J ≈ �m, a doubly resonant condition can be satisfied.

quasi-static approach, but now as a manifestation of the intrinsic optomechanical nonlinearities of cavities
1 and 2, as recognised by [11].

3.2. Enhanced linear and quadratic transduction
We now use our model to describe general transduction in the MIM system. In particular, we show how
transduction of motion to Ωm and 2Ωm optical sidebands changes with tunnelling rate J and input laser
detuning Δ. In doing so, we will first assume only one optical supermode is excited by the input field, even
when this field is not on resonance with that mode. This assumption makes the following discussion more
clear and in fact can also be achieved in experiment by exciting the MIM system through both input ports
with a particular relative phase. For example, using ain,1 = ain,2 allows excitation of only the even optical
mode, regardless of optical detuning.

When discussing the dynamics of the MIM system, two distinct situations can be distinguished, namely,
(i) a constant input power (Pin ≡

∑
i ωc,i|ain,i|2) or (ii) a constant cavity photon number (n̄c ≡

∑
i|āi|2).

The latter scenario allows isolating optomechanical effects, including the strength of nonlinear
transduction, from purely optical cavity input effects, i.e. the enhancement of cavity occupation for a
resonant input field. Moreover, cavity occupation is often the limiting factor in the experiment, due to
nonlinear effects and heating [47]. However, it could also be advantageous to minimise the input power
that is required to achieve a certain cavity photon number in certain scenarios. Thus, we will discuss both
situations in the following.

The amplitude of the −Ωm and +2Ωm sidebands of the supermodes, A(1)
o,− and A(2)

e,+, for even input
(ain,1 = ain,2) are shown in figure 3 for constant Pin (panels figures 3(a) and (b)) and constant n̄c (panels

figures 3(c) and (d)). These amplitudes are defined as A(1)
o,− = 1√

2

(
A(1)

1,− − A(1)
2,−

)
and

A(2)
e,+ = 1√

2

(
A(2)

1,+ + A(2)
2,+

)
. The amplitudes are normalised to the optimum first sideband or second

sideband amplitude that would be obtained in a single cavity for the same Pin or n̄c, which occur at
Re Δ̄ = ±Ωm. From equations (6) and (7), these read

A(1)
+ (Δ = Ωm) ≡Aref = i

g0ā

κ
X0, (20a)

A(2)
+ (Δ = Ωm) ≡A(2)

ref =
i

κ

g2
0 ā

Ωm − iκ/2

X2
0

2
, (20b)

with ā =
√

n̄c or ā =
√
κexain/(κ/2 − iΩm) for constant n̄c or Pin, respectively. We choose to display the

−Ωm first order and +2Ωm second order sidebands, because these show special double resonance
conditions for the even mode illumination condition, as discussed below. Note that, because an annihilation
operator is counterrotating in time, the +Ωm sidebands A(1)

i,+ are actually rotating at frequency ωL − Ωm in
the lab frame.

From figure 3(a), we observe strong first-order sideband generation in the odd mode either when the
carrier is on resonance with the even mode (Re(Δ̄) = −J), or when the first sideband is on resonance with
the odd mode (Re(Δ̄) = J − Ωm). Where these two resonant conditions are simultaneously met, we see a
resulting enhancement of first sideband generation [38] and the sideband amplitude exceeds A(1)

ref , the
largest amplitude possible in a single cavity. Moving to figure 3(c), we now keep the cavity photon number
n̄c constant, instead of the input power. In this case, we see that the resonance of the carrier no longer
results in large sideband amplitude. The sideband amplitude no longer exceeds A(1)

ref , that of a single cavity,
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Figure 3. Mechanical transduction amplitudes as a function of laser detuning � and mode splitting J for constant input power
Pin (panels (a) and (b)) or constant intracavity photon number flnc (panels (c),(d)) and even optical input conditions. We depict
first (left column) and second (right column) sidebands. Our colormap is chosen such that any sideband amplitude over the
single cavity limits, i.e. an enhancement, is coloured red. In panel (c) the red dashed lines indicate the value of � and J for which
the carrier is on resonance with the even or odd optical mode. For this plot, we used sideband resolution �m/κ = 20.

anywhere and we can not recognise an enhancement anymore. We conclude that the enhancement observed
in figure 3(a) does not result from enhanced couplings inside the cavity, but from a higher cavity acceptance
of input light.

Moving to the second-order sideband amplitude in figure 3(b), we see resonance lines that correspond
to either carrier resonance or +Ωm sideband resonance. Wherever the first positive sideband amplitude is
large (not shown), the second sideband amplitude rises accordingly. However, an additional resonance is
observed for the second-order sideband in figure 3(b), where the second sideband is on resonance with the
even mode (Re(Δ̄) = −J + 2Ωm). Figures 3(b) and (d) show identical dependencies, except for the line
followed by the carrier resonance (Re(Δ̄) = −J), which is not observed for constant n̄c. Of special interest is
the crossing of two resonance lines in the plots for quadratic transduction in figures 3(b) and (d),
corresponding to the doubly resonant condition Re(Δ̄) = 3Ωm/2 and 2J = Ωm. For these conditions, both
the first and the second sidebands are on resonance with their respective optical mode, as we have sketched
in figure 2(b). At these points we find the strongest generation of second-order (nonlinear) sidebands, the
maxima for A(2)

e,+, which are larger than possible in a single cavity, (denoted A(2)
ref ). Unlike with the enhanced

first sideband, this effect does not disappear when considering a fixed n̄c.
This resonance effect has been described before by Ludwig et al [1] through a perturbative expansion of

the threefold interaction between âo, âo and x̂ in equation (11). This leads to an effective nonlinear
interaction Hamiltonian that is enhanced for 2J − Ωm � κ, namely Ĥeff

OM ∼ g2
0 (1/(2J − Ωm) + 1/(2J +

Ωm))(â†
e âe − â†

oâo)x̂2. However, the magnitude of this interaction and its dependency on parameters such as
κ was not discussed. This and related works [35, 48] have investigated the implications of this enhancement
for specific quantum applications at the strong single-photon optomechanical coupling level (g0 > κ) and
weak driving/low cavity occupation regime. In these works, it was demonstrated that the coupled cavity
system had a significant advantage over a single cavity system [11], but single-photon strong coupling was
still needed to produce the sought-after nonclassical effects.

If we were to excite using odd input light conditions (ain,1 = −ain,2), the roles of odd and even modes
would be interchanged (not shown) and the same resonance conditions found on the +Ωm and −2Ωm

sidebands. From a more practical perspective, using only single-port excitation of our MIM system would
result in a Δ̄-dependence convoluted with the detuning-dependent excitation of the supermodes.

3.3. Upper bounds for second sideband enhancement
To understand exactly what the MIM system offers over a single cavity system in terms of optomechanical
nonlinearity, it is important to calculate how large the enhanced second sideband amplitude is and how this
depends on system parameters. To do so, we compare optimum second sideband amplitude from
equation (17), i.e. at the double resonance condition described above, to optimum second sideband from a
single cavity, as described in equation (20). For this, we introduce a metric that combines both sidebands of
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Figure 4. Different limits of mechanical transduction in an MIM system with 2J = �m, �m/κ = 20 and ground-state-level
coherent amplitude (X0 = 1) with optomechanical coupling g0/κ = 1/250. (a) Optical eigenfrequencies as the inter-cavity
detuning δ is varied and the cavities transition from uncoupled to coupled. (b) Linear and quadratic transduction and the
corresponding single-cavity limits for the uncoupled system. We see the single-cavity limits are not exceeded. (c) Same results for
the coupled system, where enhancement of nonlinear transduction is achieved. (d) Enhancement of nonlinear transduction as a
function of the sideband resolution of the system, showing enhancement only exists for a sideband resolved system. (e) Nonlinear
enhancement for the coupled MIM system as a function of �. We find it reaches a maximum at 2�m/κ, i.e. the degree of
sideband resolution. (d) Ratio of first to second sideband amplitude versus � as a measure of MIM system selectivity of
quadratic coupling. We notice it is limited by g0/κ, just as in a single cavity system.

the same order, namely

A(1)
s = |A(1)

s,−| + |A(1)
s,+|, (21a)

A(2)
s = |A(2)

s,−| + |A(2)
s,+|, (21b)

where s = {e, o}. As shown in appendix A, this metric is proportional to the homodyne signal amplitude at
Ωm or 2Ωm in the optimum optical quadrature. This metric can also be applied to the single-cavity case
using equations (6) and (7), to obtain the reference values A(1,2)

ref .
In figure 4, we highlight the differences between mechanical transduction in a single cavity and in an

MIM system. In figure 4(a), we see the characteristic MIM supermode frequency dependence on the static
mechanical displacement x̄. When static displacement is large (figure 4(b)), the two cavities have
frequencies that differ by more than 2J and we effectively recover the limit of two uncoupled cavities,
whereas a zero static displacement gives the coupled cavity MIM system (figure 4(c)). In figures 4(b) and
(c), we look at sidebands generated in a sideband-resolved MIM system corresponding to these crosscuts.
For this, we assume a drive of the even mode and plot quantities A(1)

o and A(2)
e . The horizontal dashed lines

are the single cavity limits A(1)
ref ≈ A(1)

ref and A(2)
ref ≈ A(2)

ref for first and second sidebands as calculated

previously. All plotted values are now normalised by A(1)
ref , which is done to give an idea of the relative size of

first and second sidebands for currently available system parameters. In figure 4(b), we reveal that
transduction for the uncoupled cavities adheres to the single cavity limits, as expected. Moving to the
coupled cavity system in figure 4(c), we see that the second sideband amplitude now surpasses the single
cavity limit.

In figure 4(d), we plot the ratio of max�(A(2)
e (Δ)) and max�(A(2)

ref (Δ)) as a measure of the
enhancement of nonlinearity for different values of sideband resolution Ωm/κ. For sideband-unresolved
systems (Ωm < κ), we see the nonlinearity is, at most, equally strong in the MIM and the single-cavity
system. This is in line with previous works that have compared nonlinear measurement of mechanical
motion in the two systems in the sideband-unresolved regime and found no enhancement of the MIM
system over a linearly coupled, single cavity [12, 49]. However, for sideband-resolved systems (Ωm > κ), the
enhancement increases with sideband resolution. Figure 4(d) demonstrates that the MIM system can only
feature larger quadratic transduction than in a single cavity when it is sideband-resolved. The absence of
enhancement for a sideband-unresolved system (Ωm � κ) can be attributed to the fact that, in a single
cavity, carrier, first and second sidebands are already resonantly enhanced due to the large spectral overlap.
We derive an expression for the enhancement factor in the case of a sideband resolved system. We look at
the case of constant n̄c, driving of the even mode and finally large sideband resolution Ωm � κ to simplify
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the expression. We find ∣∣∣∣∣
max�(A(2)

o (Δ))

max�(A(2)
ref (Δ))

∣∣∣∣∣ ≈ 2
Ωm

κ
. (22)

Equation (22) demonstrates that, for a sideband-resolved system, the MIM system enhancement of
nonlinearity is given by the degree of sideband resolution. The result from equation (22) plotted as a red
dashed line in figure 4(d). Next, in figure 4(e), we display the enhancement of the MIM system over a single
cavity for second sideband amplitude, namely A(2)/A(2)

ref . We see that, at the double resonance condition, the
enhancement peaks to the value of 2Ωm/κ.

We predict that enhanced nonlinear transduction could be experimentally observed in the currently
available MIM systems. As we have seen, this requires a sideband-resolved system Ωm/κ > 1 where the
double resonance condition can be fulfiled (2J = Ωm). In membrane systems, sideband resolution reaches
Ωm/κ ≈ 10 [7, 18, 50]. For these systems, the requirement 2J = Ωm can be fulfiled by a reduction (increase)
of J (Ωm) of less than a factor 2, both J and Ωm being in the range of hundreds of kHz. Related coupled
microtoroid resonators platforms [42] feature tunable inter-cavity coupling 2J � Ωm/2 and Ωm/κ ≈ 10,
satisfying all conditions to observe enhancement of optomechanical nonlinearity. An additional
implementation of a coupled-cavity system was proposed for 2D optomechanical crystals [41], of which it
was recently shown that individual cavities could reach Ωm/κ ≈ 28 [47].

3.4. Selectivity of quadratic over linear transduction
For experiments in which readout of the mechanical energy ∼ x̂2 is desired, maximising the ratio of first to
second-order sideband amplitude is crucial. This is because first sidebands carry information about x̂ and
their creation is thus inevitably associated with a linear quantum backaction that changes the mechanical
state of the system [32, 45].

As a figure of merit, we calculate the optimal ratio of the different sidebands, ι = |A(2)
e |/|A(1)

o |. From the
equations (equation (17)), it can be derived this value is highest at the double resonance condition, which
we find to be

ι �
g0X0

κ
. (23)

Using equation (7), we easily see that this is the same limit as can be found in a single cavity. In other
words, equation (23) indicates that the MIM system does not allow for more selective generation of the
second over first sideband as compared to a single cavity. In figure 4(e), we have plotted this sideband ratio
as a function of Δ for 2J = Ωm and ground-state-level coherent amplitude X0 = 1. We see it also peaks at
the double resonance condition, where it is limited by g0/κ. Although our calculations are classical, this
limit reminds of the results by Miao et al on QND measurements of mechanical energy. As we will briefly
discuss at the end of subsection 4.1, this is no coincidence, as the calculation underlying equation (23) is
indeed closely related to an analysis of quantum measurement noise limits.

Finally, we want to highlight another feature of the MIM system. Next to the (limited) enhancement of
optomechanical nonlinearity, the MIM systems offer a simple method for separation of different sidebands,
as they occur in orthogonal modes. Separation can be attained by a beam splitter (cf figure 1(a)), even if the
different sidebands are too close in frequency for the use of other filtering techniques. The degree of
filtering this offers, though, is reduced when the cavity is not perfectly balanced, e.g., g0,1 �= g0,2 or κ1 �= κ2,
because the different sidebands are no longer output into orthogonal modes.

4. Backaction in the MIM system

Having considered the effect of coherent mechanical motion on the cavity light field, we now move on to
the effect of the light field on the resonator. In particular, we look at the well-known dynamical backaction
(DBA) that occurs when the mechanically generated sidebands in the light field exert a force, whose sign
and phase depends on laser detuning, back upon the resonator. Although these effects have been described
in the MIM system previously [17, 20, 33, 37], we will now revisit these works using our general sideband
picture to reinterpret and unify previous results.

4.1. Dynamical backaction and quadratic spring shift
Our approach starts again from the semiclassical equations of motion equation (13a) and is similar to that
of Jayich et al [17]. A related method is used to determine DBA effects in single cavities [16]. The aim is to
find the susceptibility χ(ω) of the mechanical resonator to an external force, given by the real amplitude
Fin(t) = F0 cos(ωt). We solve for a mechanical motion that is strictly real, but can have an arbitrary phase
that we account for by letting X0 ∈ C, i.e. x(t) = (X0 eiωt + X∗

0 e−iωt)/2. Note that this means information
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about both mechanical quadratures is now caught in the complex nature of X0. We thus want to rewrite the
mechanical EOM in the form X0(ω) = χ(ω)F0.

For mechanical coherent motion given by X0, we can write down the generated first sidebands using our
previous equation (16) and thus expand |ai|2 in equation (13a) in terms of X0. In the present case we
observe that the sidebands A(1)

i,− at −Ωm actually depend on X∗
0 instead of X0. By collecting all terms with the

same time dependence, we can derive:

χ(ω)−1 = xzpfm
[
−ω2 + Ω2

m + iΓmω + Ωm(g0,1β1,+, −g0,2β2,+)
]

, (24a)

βi,+ = āiÃ
∗
i,− + ā∗

i Ãi,+, (24b)

and where Ãi,− = 2A(1)
i,−/X∗

0 and Ãi,+ = 2A(1)
i,+/X0.

One of the striking features of a Hamiltonian with quadratic optomechanical coupling, as in
equation (12), is that the optical cavity occupation n̄c =

〈
â†

c âc

〉
directly changes the mechanical frequency

by acting as an additional potential well for the resonator [20, 37]. This can be seen from the Hamiltonian
equation (12) to be:

Ωeff = Ωm + 2g(2)
0 n̄c. (25)

We shall refer to this effect as the static optical spring effect. Here, we show this effect can be described as a
consequence of DBA, in which form it is much easier to include other DBA effects that can not be recovered
from the quadratic coupling Hamiltonian, but are present in the MIM system.

By inserting Ωeff = Ωm + δΩ and Γeff = Γm + δΓ into the susceptibility for n̄c = 0, and comparing to
equation (24a), we can find expressions for these shifts to be

δΩ =
1

2
Re(g0,1β1,+ − g0,2β2,+), (26a)

δΓm = Im(g0,1β1,+ − g0,2β2,+). (26b)

Now, we assume that the drive is close to resonance of the even supermode and, as before, that the two
cavities are identical. In the adiabatic limit 2J � Ωm, Ãi,± ≈ g0āi/(2J) and β1,+ ≈ −β2,+. Combining these

findings, we recover the quadratic coupling approximation: δΩ = g2
0 n̄c/J by identifying g(2)

0 = g2
0/2J.

We see that the static optical spring effect can be regarded as a consequence of DBA, which considers
only first sidebands, and thus is not a consequence of nonlinear optomechanical coupling. To be precise, for
J � Ωm, the static optical spring effect is equal in magnitude to the optical spring effect in a single cavity
with a laser detuned from optical resonance by J. The only difference is that, due to the multimode nature
of MIM system, the carrier can be on resonance with one of the supermodes while the sidebands are far
from resonance (i.e. to the other supermode), allowing for an optical spring effect with lower input power,
an idea related to that presented by Grudinin et al [42]. The reduction in input power is given by Δ0/κ,
where Δ0 is the desired detuning from resonance for the particular application. To suppress unwanted DBA
heating or cooling, it is generally taken larger than Ωm [51]. This is one of the applications in which the
MIM could outperform a single cavity: optical tuning the mechanical resonance through the optical spring
effect using a detuned laser to suppress DBA heating or cooling in a sideband-resolved system.

In order to further discuss optically-induced mechanical frequency and linewidth in the MIM system,
we depict the relative modifications δΩm/Ωm and δΓm/Γm as a function of J and Δ̄ for constant input
power in figure 5. In figure 5(a) we can see that, in the adiabatic regime 2J > Ωm, we find the static optical
spring effect peaking at each of the supermode resonances in a way that closely resembles results from Lee
et al [37]. Approaching the regime where 2J ≈ Ωm, the size of the optical spring increases since both
sideband and carrier can be on resonance with one of the supermodes. A strong transition is found for
2J = Ωm, where one of the sidebands crosses the resonance and flips the sign of the spring effect. In
figure 5(b), we can see the optically-induced change in linewidth. The effect is again most substantial when
both the carrier and one of the first sidebands are on resonance. Comparing to the standard optical spring
effect, the linewidth change falls of more quickly when sidebands are not on resonance, which is already
well known for single cavities [16].

In previous work [17], Jayich et al extensively studied dynamical backaction as a function of inter-cavity
detuning, here given by δ = ωc,1 − ωc,2. They noted a lack of backaction for δ = 0 in the adiabatic regime. It
is argued that backaction vanishes completely because of the fact that the first derivative of supermode
frequency vanishes at δ = 0, suppressing linear coupling (see figure 1(b)). Here, however, we have revealed
that the DBA does not vanish completely. For δ = 0 and in the adiabatic regime, the first sideband
amplitude is suppressed, as discussed in section 3.1, but is not identically zero. This fact is important
because we have shown that second sideband amplitude (and thus nonlinear transduction) is suppressed
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Figure 5. Dynamical backaction effects in the MIM system for an input power of 1 μW in cavity 1, g0
2π = 1 MHz, � m

2π = 3 MHz,
κ
2π = 1 GHz and � m

2π = 5 GHz. (a) Optical spring effect normalised by the mechanical frequency. (b) Optical amplification and
cooling normalised by mechanical decay rate.

when the first sideband amplitude is suppressed. Conversely, the generation of nonlinear transduction is
associated with the presence of DBA.

This last statement can be interpreted as a classical analogue of previous results concerning the QND
measurement of mechanical Fock states using quadratic optomechanical coupling [32, 45]. These authors
showed that, as a result of the linear cross-mode coupling of the MIM system, the light field’s vacuum
fluctuations would destroy a mechanical Fock state before it could be measured through the effective
x̂2-coupling, unless the SPSC condition was fulfiled. An expression for quantum backaction was found by
calculating the susceptibility of the optical modes to the input quantum fluctuations, leading to a result
similar to A(1)

i,± in equation (16), from which we can extract the susceptibility of the optical modes to
mechanically-induced fluctuations. It is therefore also not surprizing that we recover that the ratio of
second to the first sideband is limited by the same SPSC condition g0/κ > 1. Indeed, the ratio of second to
first sideband amplitude is closely related to the ratio between the amount of information on x̂2 leaving the
cavity and the quantum backaction, as the latter is directly related to the amount of information on x̂ (i.e.
the linear transduction) that leaves the cavity [40].

4.2. Parametric squeezing
In parametric squeezing, the spring constant of a resonator is modulated at twice the mechanical frequency,
which results in a quadrature-dependent amplification or damping of the resonator [52]. Such a scheme has
previously been used in electromechanical [53, 54] and linearly coupled optomechanical [51, 55] systems.
In a quadratically coupled optomechanical system, it is possible to directly alter the mechanical spring
constant using the optical field, which can be exploited to implement this scheme [8]. In fact, we find that
the parametric squeezing effect lies at the heart of the two-phonon OMIT-like effect reported for the MIM
system [13]. This can be seen from the fact that this OMIT effect works by amplifying thermal fluctuations
in only one particular mechanical quadrature, attenuating motion in the opposite quadrature. We now set
out to compare the parametric driving effect in the MIM system to a single cavity system.

To include cavity modulation, we start from an even intracavity field given by:

āi = a(1 + ε ei2�mt), (27)

where the constant ε ∈ C, assumed to be |ε| � 1, controls the modulation phase and amplitude. Our
approach shares ingredients in common with that by Rugar and Grütter [52]. We assume a force with fixed
phase Fin(t) = F0 cos(Ωmt) and allow x(t) = Re{X0 ei�mt} as previously. The modulation sideband
controlled by ε gives an additional component to |ai|2(±Ωm), that shows up in equation (13a). In
figure 6(a), we sketch the sidebands that are created and the associated contribution to the radiation
pressure force. After making the dependence on X0 explicit, the EOM from equation (13a) implies:

Ωm

[
iΓm − (g0,1β1,+ − g0,2β2,+)

] X0

2
=

[
Ωm(g0,1β1,− − g0,2β2,−)

] X∗
0

2
+

F0

2xzpfm
, (28)

where now βi,− = āiεE∗
i + ā∗

i Ãi,−, and the amplitudes for the sidebands generated from the modulation
tone with amplitude aε by mechanical motion read

E1 = −ε
Jg0,2ā2 + (Δ̄2 + Ωm)g0,1ā1

(Δ̄1 + Ωm)(Δ̄2 + Ωm) − J2
, (29a)
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Figure 6. Amplitude of the parametrically driven mechanical motion employing 2�m-modulated light in the MIM system. (a) A
schematic depiction of the parametric drive in a single cavity explained in terms of mechanically-generated sidebands of the
carrier and modulation tone. The beating created by these sidebands acts back upon the mechanical resonator. (b) An example of
thermal squeezing of the mechanical mode. By changing the phase between modulation tone ε and force Fin, the response of the
mechanical oscillator changes. For this plot, we assume a driven even mode with flnc = 1000, g0

2π = 1 MHz, � m
2π = 3 MHz,

κ
2π = 0.25 GHz, � m

2π = 5 GHz and large splitting J = 10�m. (c) A proposed use of the MIM system in a parametric driving
experiment. Exploiting the multimode character of the system, the required input power is reduced. In (b) and (c), the colours
indicate whether light occupies the even (blue) or odd (orange) mode.

E2 = ε
−Jg0,1ā1 + (Δ̄1 + Ωm)g0,2ā2

(Δ̄1 + Ωm)(Δ̄2 + Ωm) − J2
. (29b)

Since the modulation tone is displaced by 2Ωm from the carrier, its sidebands have a different dependence
on Δ̄ than the amplitudes Ãi,±. X0 can be retrieved by combining equation (28) with its complex conjugate,
to give

X0 =
c∗ + d

|c|2 − |d|2
F0

xzpfm
(30)

with
c = iΓmΩm − Ωm(g0,1β1,+ − g0,2β2,+),

d = Ωm(g0,1β1,− − g0,2β2,−).
(31)

In figure 6(b), we display an example of the mechanical response changing with the phase of ε. When
changing the phase of ε, d changes with similar phase, altering |X0|. This is quadrature-dependent
amplification of motion: depending on the relative phase of the modulation tone ε and the force Fin, the
mechanical amplitude |X0| of the system will differ from a system with no optomechanical coupling, which
we indicate by |X̄0|.

Now, from equation (30), we can make some observations on parametric driving in the MIM system.
The amplitude of the enhanced mechanical quadrature depends on first sideband amplitudes, of which we
have determined that these are not enhanced in the MIM system with respect to a single cavity for constant
cavity number. In other words, although the MIM promises enhanced nonlinear coupling, the parametric
drive per cavity photon is not larger than in a single cavity.

A system with multiple optical modes, such as the MIM, could, however, help to reduce the required
input power, as was shown previously in the context of linear position measurement [38] and phonon
lasing [42]. Here, we propose a similar use that is particularly useful in optical parametric driving. A
schematic example of the idea is shown in figure 6(c). In an optomechanical parametric driving scheme, it
is often desirable to have the carrier far detuned from the cavity to suppress DBA heating or cooling of the
resonator [51]. This means a considerable input power is needed to reach an appreciable intracavity photon
number. In the application we envision, the carrier is on resonance with one of the two supermodes. In that
case, the sidebands can be far off-resonant given that 2J � Ωm, while requiring much less input power.

5. Heralded phonon pair generation

Previously the optomechanical interaction has been used in the heralded generation of single phonons
[56–59]. When the optomechanical interaction is linearised through using a strong optical drive, Stokes
scattering of a drive photon into the lower frequency sidebands is associated with the generation of a
phonon. When using a mechanical system close to the ground state, the consecutive detection of a single
Stokes photon within the mechanical decoherence time then heralds a one-phonon mechanical Fock state.

Analogously, the detection of photons in a Stokes sideband shifted by −2Ωm from the drive laser, created
through a nonlinear optomechanical interaction, would herald the pairwise generation of two phonons.
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Specifically, if a single mechanical mode is involved, the detection heralds a two-phonon Fock state in the
resonator. This scheme works outside the SPSC regime and even in a low-pump regime where quantum
cooperativity is small and nonclassical correlations are absent. Here, we consider the feasibility of such a
scheme in an MIM system, compare it to using a single cavity and discuss limitations due to the presence of
first sideband photon generation.

From the intracavity fields we calculated previously, we can calculate the output field in the mean-field
approximation by using the input–output relations [16]. Assuming the input light field contains only
carrier light, the output light field at the frequency of the first or second sideband is simply

√
κexA(1,2)

i,± .
Assuming optimal combination of the outputs of both cavities, the photon detection rate in any of the
sidebands is

Γ(1,2)
± = κex(|A(1,2)

1,± |2 + |A(1,2)
2,± |2), (32)

which then also estimates the generation rate of heralded two-phonon Fock states. We can approximate the
Stokes sidebands for a system initialised in the mechanical ground state by setting X0 = 2 in equations and
equation (17), accounting for sideband asymmetry [16]. Formally, the phonon transition rates can be
calculated using perturbation theory (see, for example [60]). Here transitions are excited by optical vacuum
noise spectral density, which are enhanced at the optical mode frequencies, just like our sideband
amplitudes [61].

We now consider a short measurement interval Δt (which could be defined by the duration of an optical
pulse) and a low enough first sideband amplitude such that the probability p1 = ΔtΓ(1)

+ of detecting a single
photon in the first sideband is much smaller than unity, to ensure that a heralded state is not spoiled by a
probabilistic excitation of single phonons. This condition sets an upper limit to the number of carrier
photons that can be employed in a single measurement. We denote the maximum allowed probability of
single-phonon generation (determined by the wanted level of purity) as p1,max. With the associated

maximum laser power, the probability p2 = ΔtΓ(2)
+ of detecting a photon in the second Stokes sideband to

herald a pure two-phonon state is maximised at

p2 =
p2

p1
p1,max �

(
2g0

κ

)2

p1,max, (33)

where we used our previous observation that |A(2)
e |/|A(1)

o | � g0X0/κ and assume that the system is in the
resolved-sideband regime.

As we found before, this limitation holds for both single-cavity and MIM systems. Nonetheless, the
optical power (intracavity photon number) that is required to reach the maximal rate of heralding
two-phonon states is reduced for MIM systems at the optimal condition for second sideband generation, by
a factor equal to 2Ωm/κ, as we found in equation (22). This leads to a practical advantage of the MIM
system for this scheme, especially in cryogenic settings, where heating through laser absorption is often a
significant limiting effect. Calculation of the full optical output state and conditional mechanical state
should be the topic of follow up work.

6. Conclusion

In this work, we have presented a general framework to describe nonlinear transduction and backaction
effects in an MIM optomechanical system. Using this framework, we discuss in what applications an MIM
system offers an advantage over an optomechanical cavity with a single optical and mechanical mode. We
show that the MIM system gives an enhancement of the intrinsic nonlinearity of the optomechanical
interaction for supermode splitting 2J = Ωm that is limited by the degree of sideband resolution Ωm/κ.
Additionally, the ratio of nonlinear to linear transduction in the MIM system is limited by the same
condition as it is in the single cavity, namely g0/κ, imposing constraints on the applications of the MIM
system, as was previously shown for a QND measurement of phonon number [32]. In a discussion of
backaction, we show that DBA in the MIM system is equal in strength per cavity photon to that in a single
cavity, but is altered by the fact that the MIM system is multimode optically. Similarly, we discussed that a
2Ωm-parametric driving scheme is also not enhanced in the MIM system, but that the multimode character
of the system can be used to reduce the amount of input light required to reach a specific cavity photon
number. Finally, we proposed a scheme to use the nonlinear interaction in the weak coupling regime to
herald the generation of phonon pairs, for which we found that in the MIM system the required cavity
photon number is reduced by 2Ωm/κ for a generation rate that is limited by the ratio of g0 and κ.

Although the above considerations all consider the MIM system, they can be applied to a larger class of
multimode optomechanical systems. In several works that study quadratically-coupled optomechanical
systems, second-order perturbation theory is used to derive the quadratic coupling coefficient from the
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unperturbed optical and mechanical mode fields [24, 25, 62, 63]. The quadratic coupling coefficient g(2)
0 is

proportional to the second-order correction to the eigenmode frequency for a small perturbation of
mechanical displacement:

g(2)
0 ∝ δω(2)

ω

1

4

|〈Eω|Δε|Eω〉|2
|〈Eω|ε|Eω〉|2 − 1

2

∑
ω′ �=ω

(
ω3

ω′2 − ω2

)
|〈Eω′ |Δε|Eω〉|2

〈Eω|ε|Eω〉〈Eω′ |ε|Eω′ 〉 . (34)

Here, |Eω〉 indicates the electric field of a cavity eigenmode at frequency ω, the bra-ket products indicate
overlap integrals and Δε, δω(2) denote the change in system permittivity distribution ε and eigenfrequency,
due to a small mechanical displacement Δx. In this equation, the first term is fully determined by, and
much smaller than, g0. The second term contains perturbation-induced overlaps between different
eigenmodes, which are weighted by their frequency difference such that the contribution from closely
spaced eigenmodes is enhanced. When applying this equation to the MIM system, it is the close spacing of
2J between the two supermodes that enhances quadratic coupling. However, it is this same
mechanically-induced overlap between the two optical supermodes that gives the cross-mode
optomechanical coupling, of which we have seen it limits the selectivity of quadratic over linear
optomechanical coupling in the system.

At this point a question arises: given the generality of the second-order perturbation theory calculation,
is it at all possible to design an optomechanical system such that it has a x2-coupling without the linear
cross-mode coupling? As already described by Miao et al [32], any system that does have cross-coupling
would always be restricted by the single-photon strong coupling requirement for QND measurements, and
also be limited in that there will be residual linear DBA. Currently, several proposals claim to circumvent
this restriction [24, 25, 64]. Although it is beyond the scope of this paper to discuss these works
individually, the authors would like to stress that cross-coupling between any two modes may allow
information about the position x to escape the cavity and impose quantum backaction on the resonator.
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Appendix A. Homodyne signal in optimal quadrature in terms of sideband
amplitudes

Consider homodyne detection on one of the two beamsplitter outputs from figure 1 for even driving.
Depending on the output, these contain either first- or second-order sidebands generated by mechanical
motion. We will assume first-order sidebands, although the exact same argument holds for second-order
sidebands. The output of the beam splitter combined with a local oscillator field with amplitude āL.O. is
given by the following expression

ah.d. = āL.O. eiθ + āconst +
√
κinA(1)

o,+ ei�mt +
√
κexA(1)

o,− e−i�mt , (A.1)

which we derived via the input-output relation aout = ain − √
κina [16], under the assumption of large

power |āL.O.| � |āout|. Here θ = arg āL.O. denotes the tunable local oscillator phase, with āconst containing
all time-independent contributions to the output field and A(1)

i,± denoting the sideband amplitudes from
equations (17a) and (17b).

The homodyne signal amplitude S(ω) ∝ |ah.d.|2(ω) at frequency Ωm is found to be

S(Ωm) ∝ √
κexāL.O.

[
eiθ(A(1)∗

o,+ e−i�mt + A(1)∗
o,− ei�mt) + e−iθ(A(1)

o,+ ei�mt + A(1)
o,− e−i�mt)

]

≈ 2
√
κexāL.O. Re[eiθB(t)], (A.2)

where B(t) = A(1)∗
o,+ e−i�mt + A(1)∗

o,− ei�mt and we have retained slowly-oscillating terms under a rotating wave
approximation. To optimise homodyne signal, we set θ such that, for |Bmax| = maxt(|B(t)|) and Bmax the
corresponding complex value, eiθBmax is real. We then find that S(Ωm) ∝ √

κexāL.O.|Bmax |. Given that B(t) is
the sum of two counterrotating complex amplitudes, its norm is largest when these have the same phase,
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thus if |Bmax | = |A(1)
o,−| + |A(1)

o,+| and

S(Ωm) ∝ √
κexāL.O.

(
|A(1)

o,−| + |A(1)
o,+|

)
. (A.3)

This derivation demonstrates the metric we use is a measure of the signal amplitude in the optimal
homodyne measurement.
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