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ABSTRACT

This document provides supplementary information to “Strong optomechanical interactions in a sliced photonic crystal
nanobeam”. It contains extra information on the model used for analysis, numerical simulations showing properties of the
device’s resonant modes, and analysis of the influence of non-ideal fabrication, of high optical input power, and of the
cross-polarized detection scheme.

Model for transduction
We derive the effect of a small frequency modulation of the intracavity field at the output of a cavity, which allows us to set up a
model that describes the transduction of thermal motion to optical intensity modulation. This derivation follows the calculation
shown by Gorodetsky et al.,1 with the important difference that we include the non-resonant contribution in the reflection
spectrum that leads to the Fano lineshape we observe.

We start from the equations describing the behaviour of the optomechanical system

ȧ = [i(∆−Gx(t))−κ/2]a(t)+
√

κinsin(t), (S1)

ẍ(t)+Γmẋ(t)+Ω
2
mx(t) =−h̄G|ā|2, (S2)

where a is the internal field in the cavity, sin is the input field related to the input power Pin = h̄ω|sin|2, ∆ is the detuning
of the input light from the cavity resonance ωc, κ is the cavity decay rate, κin is the coupling rate to the input channel and
G = ∂ωc/∂x is the optomechanical frequency response. The frequency Ωm and damping rate Γm of the mechanical resonator
are influenced by the number of photons in the cavity |ā|2, an effect we neglect in the following by assuming a low input power.
This simplification is motivated by the fact that we seek to predict the amplitude of the mechanically-induced light modulation,
not the frequency of such modulations. Moreover, dynamical backaction affecting mechanical linewidth is small in devices that
have large κ/Ωm.

We consider a small harmonic oscillation of the mechanical resonator x(t) = x0 cos(Ωmt), which causes a modulation of
the cavity frequency with amplitude x0G, or a modulation of the optical intracavity phase with amplitude x0G/Ωm. If the
modulation is small (x0G� κ), this yields

ax = sin
√

κin L (0)

×
[

1− i
2

x0GL (Ωm)e−iΩmt − i
2

x0GL (−Ωm)eiΩmt
]
,

L (Ω) =
1

−i(∆+Ω)+κ/2
.

(S3)

The cavity is coupled to the output sout with the coupling rate κout. The equation for the output field reads

sout = ceiϕ sin−
√

κoutax, (S4)

where the first term is caused by the nonresonant scattering from the input to the output with amplitude c and phase ϕ .
In the experiment, we measure the intensity |sout|2 and feed it to a spectrum analyser, which yields the single-sided spectrum

of the signal. Since we are interested in the strength of the spectral component at the mechanical oscillation frequency Ωm, we
highlight the time dependence here:

|sout|2(t) = c2|sin|2 +κout|ax(t)|2− c
√

κout[eiϕ sina∗x(t)+ e−iϕ s∗inax(t)]. (S5)
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The first term is constant so it does not contribute to a signal at Ωm. Substituting ax into the other two terms, and discarding any
terms not oscillating at ±Ωm yields

|sout|2(t)
∣∣∣∣
±Ωm

=
1
2

x0G|sin|2
√

κinκout ×
[√

κinκout |L (0)|2
({

ieiΩmt [L ∗(Ωm)−L (−Ωm)]
}
+ c.c.

)
− c
({

ieiΩmt [eiϕ L ∗(0)L ∗(Ωm)− e−iϕ L (0)L (−Ωm)
]}

+ c.c.
)]

. (S6)

This expression contains the modulation amplitude. In our experiment, we compare the variance of the modulation to the known
variance of the mechanical thermal motion 〈x2〉th = 2x2

zpfkBT/h̄Ωm. Therefore we calculate the variance of Pout = h̄ω0|sout |2
due to the modulation at +Ωm and −Ωm, which will both contribute to the signal at +Ωm in the single-sided spectrum. We can
write Pout

∣∣∣
±Ωm

= AeiΩmt +A∗e−iΩmt , which leads to 〈|Pout|2〉Ωm = 2|A|2. After some algebra, we arrive at
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2x2

0G2P2
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(S7)

If we evaluate this expression in the bad-cavity limit (Ωm� κ), we find it is directly related to the derivative of the Fano
lineshape ∂R/∂∆:

〈|Pout|2〉Ωm =
2x2

0G2P2
inκinκout

[
∆
√

κinκout− c∆κ cosϕ− c(∆2−κ2/4)sinϕ
]2

(∆2 +κ2/4)4

=
1
2

x2
0G2P2

in

(
∂R
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)2

.

(S8)

We note that imperfect transmission of the optics between the sample and the detector scales the detected signal in the
same way as the input power Pin, and will enter the equations in the same way. Finally, we substitute the variance due to the
modulation amplitude x0 by the variance of the thermal mechanical motion: x2

0G2→ 2〈x2〉thG2 = 4g2
0kBT/h̄Ωm, which leads

to equation (3) in the main text.

Nonlinear transduction
The previous section started from the assumption that the frequency modulation δωc = Gδx is small with respect to the cavity
linewidth, δωc� κ , and considered only the resulting linear transduction at the modulation frequency Ωm. In this section we
show that the first signature of large δωc is the appearance of nonlinear transduction, which produces a signal at multiples of
the modulation frequency Ωm. For the second-order transduction, this was shown by Doolin et al.,2 where also a quadratic
optomechanical coupling was taken into account. Here we derive the result for any higher-order terms of nonlinear transduction.

In the non-resolved sideband regime (κ �Ωm), the optical fields in the cavity reach a steady state much faster than the
timescale of mechanical motion. The intracavity amplitude can then be written as

a(t) =
√

κinsin

−i[∆−δωc(t)]+κ/2
, (S9)

which combined with equation (S4) yields

|sout|2
|sin|2

= c2 +
4κinκout

κ2
1

1+u2 −
2c
√

κinκout

κ

eiϕ(1− iu)+ e−iϕ(1+ iu)
1+u2 . (S10)

Here we defined u≡ 2(∆−δωc(t))/κ , which implies u is detuning- and time-dependent. We now summarize equation (S10)
as R′(u) and find the Taylor expansion for small δωc around u0 ≡ 2∆/κ:

R′(u) = R′(u0)−
2δωc

κ

∂R′(u0)

∂u
+ . . .+

(−2δωc/κ)n

n!
∂ nR′(u0)

∂un , (S11)
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Figure S1. Optical modes in the sliced nanobeam. (a) Simulated dispersion diagram showing the TE-like waveguide modes
in the periodic part of the sliced nanobeam. A bandgap is opened by the periodic structure of elliptical holes around a frequency
of 200 THz. (b) Simulated transverse electric field profiles of the first two cavity modes of the structure. The defect that is
responsible for the creation of these modes is a slightly smaller distance between the two holes in the center of the beam.

where the last term depicts the nth order in the Taylor expansion. We take a harmonic modulation of the cavity frequency
δωc(t) = AcosΩt. To leading order, δωn

c ≈ An cos(nΩt)/2n−1. This means that each successive term in the Taylor expansion
in equation (S11) gives the amplitude of a term at different frequency.

In the optomechanical system, the variance of the frequency modulations at the mechanical frequency Ωm is given by
〈δω2

c 〉 = G2〈x2〉th = 2g2
0kBT/h̄Ωm. Therefore we get the same variance in R if we set A = 2g0

√
kBT/h̄Ωm. We note that

∂ nR′(u0)
∂un = (κ/2)n ∂ nR(∆)

∂∆n , which for the variance of the signal at nΩm leads to

〈P2〉
P2

in

∣∣∣∣
nΩm

= 〈R2〉
∣∣∣
nΩm

=
2(g2

0kBT/h̄Ωm)
n

n!2

(
∂ nR(∆)

∂∆n

)2

. (S12)

For n = 1, the result of equation (3) in the main text is again reproduced. The result of a calculation of the variances of n = 1–4,
for the parameters used in the experiment, is shown in the main text in Fig. 5c.

Waveguide modes in the sliced nanobeam
In this section we discuss the waveguide modes in the periodic region of the sliced nanobeam in more detail. The free-standing
silicon nanobeam acts as a waveguide, which can guide light via total internal reflection. In this waveguide, the elliptical
holes form a photonic crystal that opens a bandgap for modes with transverse electric (TE)-like symmetry (Fig. S1a). This
is not a full bandgap, since TM-like waveguide modes exist in the gap region. If the symmetry of the structure is broken by
fabrication imperfections, light in the bandgap region for TE-like modes can scatter to the TM-like modes and propagate along
the nanobeam. For this reason, this is sometimes referred to as a quasi-bandgap.

The guided mode at the lower edge of the band gap has the largest concentration of energy in the nanoscale gap in the
middle of the beam. The fact that a significant portion of this mode’s energy is located in vacuum increases its frequency in
comparison to a non-sliced nanobeam, which reduces the frequency width of the bandgap. To ensure maximum mirror strength,
the transverse size of the holes is made as large as possible. The elliptical hole shape is as such important to realize a strong
bandgap, in addition to providing favorable mechanical properties as mentioned in the main text.

To create optical cavity modes that are derived from the lower band edge, the defect is a local decrease in distance between
two elliptical holes, which decreases the local effective refractive index and creates defect states in the bandgap region. Fig. S1b
shows the first two cavity modes created in this way in the sliced nanobeam. Note that the higher-order cavity modes have a
lower frequency, since they are less confined near the defect, so that the frequency is closer to that of the waveguide mode in
the periodic structure.

Overlap of optical and mechanical mode profiles
The frequency shift of the optical resonance of the sliced nanobeam due to mechanical motion depends on the overlap between
the optical and mechanical mode profiles. We simulated the frequency shift of the optical resonance of the sliced nanobeam
due to a uniform mechanical shift of 1 nm, as shown in the main text in Fig. 1d. To estimate the influence of the finite extent
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Figure S2. Normalized resonant mode profiles of the fundamental optical and mechanical resonance of the sliced nanobeam.
The red dotted line shows the displacement along the length of the beam, while the blue solid line represents the local energy
density.

of the mode profiles on the response, we extract these profiles from the numerical simulation. Fig. S2 shows the normalized
displacement profile of the mechanical resonance and the normalized electromagnetic energy density profile of the optical
cavity mode, as a function of the position along the nanobeam.

The mechanical mode profile closely resembles the mode profile of the fundamental mode of a doubly-clamped beam. From
the simulated displacement profile we calculate the effective mass for this purely antisymmetric motion to be meff ≈ 0.39m,
where m is the total mass of the sliced nanobeam, which is indeed very close to the value obtained from the analytical
displacement profile of a uniform doubly-clamped beam.3

The optical mode profile clearly shows the localization of the energy density in the small gaps between the silicon ‘teeth’ of
the structure. The simple defect we introduce in the center of the beam localizes the optical cavity mode there, while the field
decays exponentially away from the defect, where the optical frequency lies inside the photonic quasi-bandgap.

We compute the correction on the frequency shift due to the finite extent of the modes from the overlap integral between
these two mode profiles, and find a factor of 0.90 with respect to the frequency shift for a uniform displacement of the beam.

The higher-order cavity modes created by the defect are less strongly confined along the length of the beam, as shown in
Fig. S1b. Since the fundamental mechanical resonance has the largest displacement in the center of the beam, the higher-order
cavity modes are less sensitive to this motion than the fundamental optical resonance.

Mechanical mode coupling
The mechanical modes observed in a two-beam system are combinations of the motion of the individual beams, with in the
perfectly symmetrical case fully in-phase or out-of-phase motion. Here we derive the consequences of imperfect symmetry for
the ratio of scattered power between the two modes.4

Harmonic motion of the two beams at a certain frequency Ω can be described as:[
x1(t)
x2(t)

]
=

[
ψ1
ψ2

]
cosΩt ≡ ~ψ cosΩt, where ~ψ =

[
ψ1
ψ2

]
. (S13)

Thus, ψ1 and ψ2 are the amplitudes of the oscillatory motion of the two individual beams, such that their variance is
〈ψ2

1,2〉= 1
2 ψ2

1,2.
The optical response of the system is determined by the change in the distance between the beams: d = x1− x2. Here we

define x as x ≡ d/2, which leads to the same value of G = ∂ωc/∂x for both mechanical modes. Note that this choice of x
corresponds to the lab-frame displacement of the two beams if they move in antiphase. The variance of x due to harmonic
motion described by ~ψ is then:

〈x2〉ψ = 1
8

(
ψ

2
1 +ψ

2
2 −2ψ1ψ2

)
. (S14)

The state vectors of the two normal modes can be written without loss of generality as

~ψα = Aα

[
cosθ

sinθ

]
, ~ψβ = Aβ

[
sinθ

−cosθ

]
. (S15)
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Figure S3. Simulated mechanical displacement profiles of the two fundamental in-plane resonances, including disorder and
compressive stress. The dimensions of the beam were matched to the realized dimensions using measurements with a scanning
electron microscope, including differences in hole and gap size along the beam. Compressive stress was introduced in the
simulation by displacing one of the support pads by 10 nm along the direction of the beam.

For both of these modes, we can calculate the variance of x, denoted as 〈x2〉α and 〈x2〉β , respectively:

〈x2〉α =
1
8

A2
α(cos2

θ + sin2
θ +2sinθ cosθ)

=
A2

α

8
(1+ sin2θ),

〈x2〉β =
A2

β

8
(1− sin2θ)

(S16)

For the beams undergoing thermal motion, the variance is given by the equipartition theorem:

〈x2〉α =
kBT

mα Ω2
α

, 〈x2〉β =
kBT

mβ Ω2
β

, (S17)

where mα and mβ are the effective mass of these modes. As shown in the previous section, for the differential mode the
simulated effective mass with respect to the displacement coordinate x is meff = 0.39m, with m the total mass of the sliced
nanobeam. Evaluating equations (S16) and (S17) for a differential mode (θ = π/4) yields A2

α = 4kBT/meffΩ
2
α and similarly

for A2
β

. Substituting this back into equation (S16), we arrive at

〈x2〉α =
kBT (1+ sin2θ)

meffΩ
2
α

, 〈x2〉β =
kBT (1− sin2θ)

meffΩ
2
β

. (S18)

We note that thermal variance is related to the zero-point fluctuations xzpf as

〈x2〉ψ = 2
kBT
h̄Ωψ

(xψ

zpf)
2, so xψ

zpf =

√
h̄(1± sin2θ)

4meffΩψ

, (S19)

where ψ = α,β and + respectively − is chosen as the sign for the term sin2θ .
Finally, we measure 〈P2〉 and wish to relate this to a displacement variance 〈x2〉. We calculated meff using the simulated

mode profile and assume the thermal bath temperature of the mechanical modes T is equal to the lab temperature, which leaves
only θ and the transduction factor ∂P/∂x unknown. By measuring the area of both peaks 〈P2〉α and 〈P2〉β , we resolve the
remaining ambiguity, allowing us to calibrate the displacement spectrum.

Influence of compressive stress and experimental disorder
The simulation of the ideal structure shown in the main text predicts the resonance frequency of the fundamental in-plane
resonance to be 6 MHz, and additionally the frequency difference between the anti-symmetric and symmetric mode is negligible.
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Figure S4. Power dependence. The red and blue datapoints show the measured signal from the two fundamental mechanical
resonances, obtained by fitting both mechanical resonances in the spectra (see Fig. 2 in the main text for such a spectrum). The
data was taken at various input powers with resonant laser light (zero detuning). The green line is a guide to the eye, with a
slope corresponding to quadratic dependence on input power. The errorbars indicate readout error of the input power but don’t
take into account possible variations in incoupling efficiency due to slight changes in alignment.

We expect the frequency of the out-of-plane resonances to be larger than that of the fundamental in-plane mode, as the narrowest
part of the half-beams (80 nm) is smaller than the Si slab thickness (200 nm).

In our experiment we find significantly smaller values of 2.6 and 3.2 MHz for one structure, and 1.4 and 2.0 MHz for a
second structure. The differences between the frequencies of the two in-plane resonances are also larger than expected. To find
the origin of this effect we measure the experimentally observed disorder produced by the fabrication process of the second
structure using a scanning electron microscope. We then introduce these dimensions into the simulation, which results in
slightly different eigenfrequencies. However, the resulting values are still near 6 MHz and additionally the two fundamental
modes still have only a small frequency difference.

Finally, we add an extra step to the simulation to include a static compressive stress, which can result from the stress in the
buried oxide layer of the silicon-on-insulator layer structure we use.5 We define an initial displacement for one of the support
pads along the length of the beam, which creates the stress. Increasing the amount of displacement, and therefore the stress,
decreases the eigenfrequencies predicted by the simulation. This is in accordance with the theoretical expectation.6 At the same
time the difference between the eigenfrequencies of the two fundamental modes increases.

Fig. S3 shows the displacement profiles that result from such a simulation. At a displacement value of 10 nm (0.09% of the
length of the beam), the resonances occur at frequencies very close to the experimentally measured values, at 1.5 and 1.9 MHz.

Influence of optical input power
In the measurements shown in the main text, we use up to 370 µW of optical power incident on the nanobeam. Using the
parameters of our fit to the reflection spectrum, we estimate that this results in an intracavity intensity that corresponds to a
maximum of ≈ 1000 photons. For this intensity in the cavity, we do not expect an increase in the cavity temperature of more
than a few Kelvin. As a first confirmation of this, we see thermal shifts of the cavity resonance frequency of less than 1 nm,
which corresponds to a temperature increase of less than 10%.

To check the assumption more thoroughly we measured the signal strength of the two fundamental mechanical frequencies
as a function of power incident on the structure. Fig. S4 shows the result for resonant light, both from the zero-detuning point
in swept measurements and from individual measurements where the detuning was set to zero by minimizing the optically
induced shift of the mechanical frequency. Comparison with the line shows that the datapoints closely follow the expected
quadratic dependence on input power for both peaks in the spectrum. The largest source of uncertainty in this measurement are
differences in coupling efficiency between the incoming laser beam and the cavity due to small changes in alignments, which
can influence the signal strength between measurements.
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Figure S5. Calculated reflection curves for various polarization settings: cross-polarized (bottom, blue curve), with the cavity
at 45° to both, and with input and output polarizers both oriented perpendicular and parallel to the cavity polarizability (middle
(flat) orange curve and top green curve, respectively).

Cross-polarized reflection
In the main text we show only cross-polarized reflection spectra, with the cavity oriented at 45° with respect to both the input
and output polarization. Our reflection setup does not allow measuring non-cross-polarized reflection directly due to our use
of a polarizing beamsplitter. However, we can simulate what we expect for the reflection based on a simplified model of the
experiment. For this we assume the coupling to the cavity, specifically its polarization response, can be described as coupling
to a dipole polarizability. This means it will not couple at all when light is polarized perpendicular to the polarizability and
the coupling will be exactly 1/2 when oriented at 45°. Additionally, we need to estimate the direct reflection when not using
a cross-polarization scheme. The main contribution to this is the reflection of the flat silicon substrate interface, which we
calculate using the Fresnel equations. This yields a reflectivity of 31%. The additional contribution of non-resonant scattering
from the nanobeams as well as a possible contribution from the (unpolished) back surface of the silicon substrate have been
neglected. Fig. S5 shows the result of this calculation, using the fitted parameters from the reflection spectrum shown in Fig. 3a
in the main text.

In our experiment, we also inserted a quarter-wave plate between the polarizing beamsplitter and the sample. By turning the
quarter-wave plate, we could tune the incident and outgoing polarization between linear and circular, simultaneously varying
the degree of suppression of the direct reflection. We verified that this yielded the expected results: first a large effect on the
shape of the resulting Fano lineshape, due to the amplitude change of the direct reflection as well as the phase delay introduced
by the slow axis of the waveplate; second a relatively small effect on the rate of coupling to the cavity, since the rate of coupling
to a dipolar resonator hardly changes when going from linear at 45° to circular polarization. We note that for some settings of
the waveplate, it was possible to reach an almost perfect Lorentzian peak or dip in the reflection spectrum, which suggests the
contribution of non-resonant scattering of the nanobeam can interfere destructively or constructively with direct reflection from
the silicon substrate at these settings.
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