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1 Experimental details

1.1 Experimental setup

Figure 1 shows a schematic of the employed experimental setup. At the heart of the optical
setup is a Ti:Sapphire laser (Sirah Matisse TX) operating at a wavelength around 780 nm.
The laser exhibits quantum limited amplitude and phase noise at Fourier frequencies
relevant for this experiment. During the experiments the laser is locked to an external
reference cavity such that drifts of the laser detuning ∆ can be neglected during the
acquisition time.

The sample itself resides in a helium-3 exchange gas cryostat (Oxford Instruments
Heliox TL) that is used for cryogenic pre-cooling of the mechanical mode to low temper-
atures. Since the toroids are situated directly above the surface of the liquified helium-3,
the achievable temperature is directly linked to the vapor pressure curve of helium-3.
As the toroidal microstructures are thermally very well isolated from the substrate, one
relies on cooling via the helium-3 exchange gas. As a consequence, cryostat temperature
setpoints of at least 650 mK (corresponding to pressures larger than ≈ 0.15mbar) are
favorable. Coupling of light into the toroid is achieved via a tapered optical fiber that
is approached using piezo positioners, which are compatible with low temperature oper-
ation (Attocube GmbH). The fiber ends are guided through and out of the cryostat and
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Supplementary Figure 1: Setup. See text for details.
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constitute one arm of the interferometer that is part of the balanced homodyne detection
scheme. The length of one of the ca. 8 m long arms is servo-locked using a movable
mirror to cancel the DC-component of the interferometer’s signal. This setting allows a
shot-noise limited read-out of the phase noise imprinted onto the transmitted laser field.
The laser passes an electro-optical modulator that allows to create sidebands around the
laser frequency. Last, the laser power is stabilized actively in absolute terms at the input
of the experiment to ensure operation at a constant light intensity.

The three colored building blocks highlighted in Figure 1 depict the three different
measurements that are routinely performed one after the other.

• Coherent response. A network analyzer sweeps the upper modulation sideband over
the optical resonance and demodulates the corresponding (coherent) signal (cf. sec-
tion 3.6).

• Noise spectrum. Connecting only an electronic spectrum analyzer gives access to
the incoherent noise spectrum (cf. section 3.5).

• Time domain response. Sending a pulsed stimulus from an arbitrary waveform gen-
erator to the EOM which modulates the coupling laser gives access to the dynamic
time domain response of the optomechanical system (cf. section 1.3).

1.2 Influence of guided acoustic wave Brillouin scatting

A crucial prerequisite for optomechanical measurements in the quantum regime is the use
of a quantum limited laser source. From the point of view of quantum manipulations,
added noise in the coupling beam corresponds to an improper state preparation, the op-
tical beam being in a statistical mixture of pure quantum states. In the weak coupling
limit Ωc � κ, where the optical field acts as an effective bath, these extra fluctuations
correspond to an increased temperature of the bath and prevents cooling close to the
quantum ground state [1, 2, 3]. In addition, classical laser noise driving the optomechan-
ical system can lead to ambiguous signatures such as squashing in the noise spectra, as
reported previously [4]. We have verified in our previous work [5], that the employed laser
source is quantum limited.

However, as is well known from fiber-based quantum optics experiments [6], optical
fibers can give rise to classical phase noise, in the form of guided acoustic wave Brillouin
scattering (GAWBS). This process involves thermally driven radial mechanical modes of
the fiber, that also modulate the optical path length.

To investigate the presence of GAWBS we have recorded the noise spectrum from the
homodyne detector when the fiber is retracted away from the optomechanical cavity in an
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imbalanced Mach-Zehnder interferometer. Several classical peaks are observed on top of
the shot-noise background (not corrected for the detector response)(Fig. 2). The width
(i.e. damping) of the noise peaks was observed to narrow dramatically when the buffer was
partly stripped off the fiber, clearly demonstrating the mechanical nature of the peaks.
One of the peaks coincides with the mechanical resonance frequency of 78MHz. However,
the frequency of the dilatational fiber modes is proportional to the inverse fiber radius
and can therefore be shifted by etching the fiber cladding in an HF solution. Immersing
the fibers (without removing the acrylate buffer, which is permeable to HF) in a 40%
HF solution for 50 minutes reduced the cladding diameter from 125µm to 95µm. This
increased the GAWBS mode frequencies of all fibers in the setup by ≈ 30%, shifting them
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Supplementary Figure 2: Engineering of the fiber GAWBS noise spectrum. The
figure shows a broadband background spectrum of the imbalanced homodyne signal where
the GAWBS modes are visible. Blue, green and red trace are taken with unmodified,
partly stripped buffer and (almost entirely) etched fiber respectively. As expected for
guided dilatational acoustic waves of the optical fiber the frequencies are increased by
a factor of about 1.3 for a thinned fiber of around 95µm diameter (as compared to
125µm before). Doublets in the red trace are due to slightly different final etching radii
(difference is about 3µm) of the different fibers in our setup (i.e., local oscillator fiber
and the signal fiber). The difference in relative heights of the peaks is attributed to
varying readout conditions, and as such only the peak’s frequencies are of interest. The
inset shows a zoom of the background for the final setup (i.e., etching reduced diameter
fibers, balanced homodyne arm lengths) and illustrates the achieved improvements, i.e.,
the reduced contribution of GAWBS to the background at the mechanical resonance
frequency.
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away from the mechanical resonance frequency of the toroid (Fig. 2a).
The data shown in Fig. 2b have been taken under the same conditions as the lowest

occupation run shown in Fig. 2 of the main manuscript. The residual noise at 78MHz
(due to small portions of fibers that have not been etched) is approximately a factor seven
smaller than the initial peaks, corresponding to a noise level of approximately 2% of the
shot-noise. This noise is generated along the fibers, both before and after the cavity.
Special care was taken to minimize the length of unetched fiber before the cavity. The
fact that an influence of the cavity detuning and coupling parameters on the transduction
of these classical noise peaks into a measured signal is not discernible indicates that indeed
most remaining noise originates from fiber after the cavity. Under this assumption, the
independent noise of the GAWBS can be subtracted from the signal in order to estimate
the decoherence rate and occupation. Figure 2c in the main text shows that the shape
of the spectra, as predicted from independently measured parameters, is in excellent
agreement with the data after subtraction, in which no signs of squashing are observed.
Nonetheless, we have performed an additional analysis for the lowest-occupancy data
under the assumption that half of the noise is generated before the cavity, which leads
to deviations of the decoherence rate and occupation of 7% and 5%, respectively. This
upper bound of the influence of GAWBS, corresponding to an uncertainty of 0.08 phonons,
is included in the quoted errors (cf. section 3.9).

1.3 Time-domain response

In order to probe the coherent dynamics of the optomechanical system in the time domain,
the strong pump beam is tuned to the red sideband, and an RF pulse, resonant with the
mechanical oscillator, is sent to the EOM. The upper modulation sideband excites the
strongly coupled system. The subsequent evolution of the transmitted signal is recorded
using the homodyne detector and an oscilloscope.

An arbitrary signal generator (Agilent 33250A) is used to generate the RF pulses. The
time dependent voltage U(t) is a sine wave modulated by a Gaussian envelope:

U(t) = E(t) sin(Ωmodt+ φ0) (S1)

E(t) = U0e
−( t−t0

τ )
2

(S2)

with a carrier frequency Ωmod = 2π · 77MHz and an envelope duration τ = 32 ns
(FWHM = 54 ns). A digital oscilloscope, synchronously triggered with the signal gen-
erator is used to record and average the homodyne response. The very small signal
originating from the balanced detectors is amplified and filtered, around a frequency of
75MHz, with a bandwidth of 100MHz. For low excitation amplitude, averaging is neces-
sary to extract the coherent response out of the incoherent thermal and quantum noises
from the optomechanical system.
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The modulation depth β(t) corresponding to the instantaneous value of the slowly
varying envelope is given by:

β(t) = π
E(t)

Vπ

, (S3)

where Vπ = 154 V is the voltage corresponding to a π phase shift of the beam in the EOM
(NewFocus 4002). For a weak modulation depth (β � 1), a fraction (β/2)2 of the optical
carrier power Pc is scattered into each of the two first modulation sidebands. The total
optical power in the upper sideband can hence be simply approximated by

P (t) ≈ Pc

(
π
E(t)

2Vπ

)2

(S4)

The total energy in the pulse can then be obtained by integrating the instantaneous power
over the duration of the pulse. The average number of photons in one pulse is hence given
by:

n ≈ 1

�ω

∫ +∞

−∞
Pc

(
πE(t)

2Vπ

)2

dt =
π5/2

4
√
2

τPc

�ω

(
U0

Vπ

)2

(S5)

2 Optimized spoke anchored toroidal resonator

2.1 Sample design

The optomechanical microresonators investigated in this work are specially designed
toroidal microcavities, optimized to achieve large optomechanical coupling rates and small
dissipation. Toroidal silica whispering gallery mode microresonators exhibit mechanical
modes coupled to the optical modes through radiation pressure [7]. Of particular interest
is the lowest order radial breathing mode (RBM), whose motion maximally modulates
the optical cavity length. In the context of quantum-coherent coupling, it is important
to simultaneously achieve large values of Ωc/γ and Ωc/κ, where Ωc = 2g0 |ā|. The vac-
uum optomechanical coupling rate is given by ω

R

√
�/ (2meffΩm), where R is the toroid

radius, meff is the effective mass, and ω and Ωm are the optical and mechanical resonance
frequencies, respectively. For a given incident power, optical frequency, and environment
temperature, and assuming the resolved sideband regime and the coupling laser being

tuned to the lower mechanical sideband, one obtains Ωc/γ ∝
(
RΓm

√
Ωmmeff/κ

)−1

and

Ωc/κ ∝
(
RΩ

3/2
m

√
meffκ

)−1

. It is therefore obviously beneficial to reduce the sample di-

mensions to decrease R and meff . However, such miniaturization is generally accompanied
by an increase of the mechanical frequency Ωm, as well as an increase of Γm due to en-
hanced clamping losses. In microtoroids, both of these adverse effects can be countered
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Supplementary Figure 3: Sample optimization by finite element modeling. See
text for details.

in a design in which the toroid is suspended by spokes from the central pillar, as shown
in Fig. 3a.

The introduction of spokes serves three purposes. First, they isolate the mechanical
motion of the toroidal RBM from the pillar support, strongly reducing clamping losses [8].
Second, they reduce the mechanical mode volume and thereby the effective mass. Third,
the effective spring constant is reduced, which lowers the mechanical resonance frequency.
In practice, one needs to carefully consider the precise dimensions and positioning of the
spokes, as these strongly affect both clamping losses Γclamp and g0. Figure 3b shows the
displacement profile of the RBM of a spoke-supported toroid of radius R = 15 µm for
various combinations of spoke length and position, as simulated with a finite element
method. The SiO2 thickness is 1 µm, the minor toroid radius is 2 µm, the spoke width
is 500 nm, the pillar diameter is 1 µm, and the toroid is vertically offset from the middle
SiO2 disk by 400 nm. Since we are interested in the RBM only, it suffices to simulate 1/8
portion of the microresonator while assuming symmetric boundary conditions on both of
the two ‘cut’ planes. As can be seen from these examples, the mechanical mode profiles
can change drastically depending on the spoke dimensions. Of the examples in Fig. 3b,
only ‘D’ depicts a mode that is purely localized to the outer toroid, with purely radial
displacement, as illustrated in the cross-section in Fig. 3c.

The origin of this wildly varying nature of the RBM is revealed in Fig. 3d, where
the radius ri of the inner disk (defining the spoke placement) and the spoke length ls are
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varied systematically. The colorscale depicts the parameter F , defined as

F =
2πEmech

cρΩ2
m

∫
Ap

|∆z (x)|2 dA
. (S6)

Here, Emech is the total mechanical energy in the mode, c the speed of sound in silica, ρ the
density of silica, and ∆z (x) the out-of-plane displacement amplitude, with the integration
extending over the area Ap of the interface between the pillar and the silica disk. F is
proportional to the expected value of Γ−1

clamp, when the clamping area Ap is considered as a

membrane radiating energy with a power P = cρΩ2
m

∫
Ap

|∆z (x)|2 dA [8]. A previous study

has experimentally found a correspondence of F ≈ (3Γclamp/ (2π))
−1 for larger toroids.

As can be seen from the figure, the expected clamping losses vary strongly with spoke
dimensions, ranging from 101 to 106 Hz. Most notably, several lines can be identified
in this parameter space where clamping losses are large (indicated by the dashed lines).
For parameter combinations along each of these lines, the RBM frequency approaches
that of another mechanical mode of the structure. As a result, the two modes exhibit an
anticrossing, with the hybridized modes showing a character of both uncoupled modes.
This is the case for examples ‘A’, ‘B’, and ‘C’ in Fig. 3b, which show the RBM hybridized
with a flexural mode of the inner SiO2 disk, the outermost SiO2 membrane, and the spoke
itself, respectively. In the vicinity of these anticrossings, the vertical displacement at
the pillar, and as such the radiation into the substrate F−1, are strongly enhanced. To
achieve a design that exhibits small clamping losses, it is therefore crucial to avoid these
parameter regions, as is the case for mode ‘D’ in Fig. 3b.

The aforementioned anticrossings affect the coupling rate g0 as well, albeit to a lesser
degree. Fig. 3e shows g0, calculated as in [9], assuming the optical mode is localized at the
edge of the toroid with negligible transverse size. At the anticrossings, g0 is reduced (i.e.,
the effective mass is increased), as a significant part of the mode’s energy is in that case
associated with displacements that do not modulate the cavity length. Away from the
anticrossings, however, the RBM mode is localized exclusively in the toroid and outermost
part of the membrane, well isolated from the inner disk and pillar support. As a result,
meff is nearly identical to the physical mass of this volume. It is therefore important to
minimize the volume of the outermost membrane, i.e., the distance between the spokes
and the toroid. As can be seen in Fig. 3f, this simultaneously allows to reach the smallest
possible resonance frequency. In practice, the laser reflow process used to form the toroid
poses a lower limit on the remaining distance between spokes and toroid.

2.2 Sample fabrication

To fabricate the spoke-anchored microresonators, we use a combination of optical lithog-
raphy and dry etching techniques outlined in Fig. 4. In a first step (b), a disk including
the spokes is transferred in a 1 µm thick film of thermal oxide on a Si wafer (a), through
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Supplementary Figure 4: Sample fabrication. See text for details.

optical lithography followed by reactive ion etching of the SiO2. In a second photolithog-
raphy step (c), smaller disks of photoresist are defined that cover the center of the SiO2

disks, including the spokes. These serve to protect the exposed Si surface between the
spokes during the subsequent isotropic XeF2 etch (d) of the Si substrate. Care is taken
to stop the etch shortly before it reaches the apertures in the SiO2 disk. After removing
the protective photoresist disks, a laser reflow of the underetched disk is performed (e),
forming the silica toroid. Finally (f), a second XeF2 etch releases the toroid and reduces
the pillar diameter, typically to a value smaller than 1 µm.

2.3 Sample characterization

The vacuum optomechanical coupling rate g0 is measured at room temperature in a vac-
uum chamber. Therefore, the mechanical motion is read out using a external cavity
tunable diode laser at 1550 nm, that is locked to a cavity resonance. In order to avoid
any radiation pressure effects we perform these measurements at very low laser power (typ-
ically around 100 nW). The transmitted light is amplified by a low noise erbium-doped
fiber amplifier and sent onto a photodector. For absolute calibration of the mechanical
spectrum registered by an electronic spectrum analyzer, we use a phase-modulation tech-
nique [10]. We extract a vacuum optomechanical coupling rate of g0 = 1700Hz for a
wavelength of 1550 nm (i.e. g0 = 3400Hz at 780 nm).

The mechanical linewidth measured at room temperature (8.1 kHz) was found to be
higher than expected from the calculated F-parameter (cf. section 2.1). However, per-
forming the same measurements in the cryostat (cf. Fig. 5b), a linewidth as low as 3.6
kHz was found on the same microresonator, indicating that a loss mechanism other than
clamping losses must dominate at room temperature. Since there losses due to two level

9
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Supplementary Figure 5: Sample characterization. a) shows a calibrated mechanical
noise spectrum for the resonator used throughout the manuscript (except the last panel
of Fig. 4 of the main manuscript), which was measured at room temperature in vacuum.
The fit (red line) was used to extract a vacuum optomechanical coupling rate of 3400
Hz at 780 nm. b) mechanical damping of this toroid vs. cryostat temperature. The red
line is a fit according to the TLS model presented in [11, 5], the grey lines represent the
contributions from resonant (dotted) and relaxational (dashed) processes. The fit yields
a negligible contribution of clamping losses.

fluctuators (TLS, [11, 12]) have been found to be significantly lower (linewidths below
4 kHz have been measured at room temperature for conventional toroids of similar fre-
quency), we believe that the dominating loss mechanism is thermo-elastic damping (TED)
[13]. At low temperatures, where TED is strongly reduced, the main loss mechanism is
coupling to TLS. Figure 5b shows the measured temperature dependence of the mechan-
ical linewidth at low temperature, obtained with the laser (with 100 nW power) resonant
with the, in this case, strongly overcoupled optical resonance to avoid dynamical back-
action. The variation of Γm with temperature can be fitted using a model for the TLS
losses [11, 5]. It is found that this mechanism dominates the total losses for all reachable
cryogenic temperatures. This means that it is not possible to retrieve an accurate estima-
tion of the temperature-independent contribution Γclamp. We can however conclude that
it must be at least smaller than 2 kHz for this sample. This shows that in our optimized
spoke-supported design, we have successfully mitigated the clamping losses to the level
where they are insignificant compared to intrinsic dissipation.
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3 Modeling of optomechanical interaction

This section summarizes the theoretical model which was used to extract all entities of
interest from our data. Figure 6 shows the parameters and variables of the model, and
their mutual connections.

3.1 Conservative dynamics

The conservative dynamics of an optomechanical system are described by the Hamiltonian
[14]

H =
1

4
�Ωm

(
q2 + p2

)
+ �ωc

(
a†a+

1

2

)
+ �g0q a†a, (S7)

where mechanical quadrature operators q and p are related to the corresponding mechan-
ical ladder operators b and b† via

q = b+ b† (S8)

p = (b− b†)/i. (S9)
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displacement q
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Supplementary Figure 6: Theoretical model used. See text for details.
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With these definitions [q, p] = 2i, and the actual mechanical displacement and momentum
are given by x′ = xzpmq and p′ = �p/2xzpm with the amplitude of the zero-point motion

xzpm =

√
�

2meffΩm

. (S10)

The vacuum optomechanical coupling rate g0 quantifies the strength of the optomechanical
interaction and is given by g0 = Gxzpm with G = ∂ωc/∂x.

3.2 Quantum Langevin equations

The Hamiltonian (S7) determines the conservative evolution of the optomechanical degrees
of freedom. Optical and mechanical dissipation, and the corresponding fluctuations, can
be taken into account by introducing the mechanical dissipation rate Γm and the optical
dissipation rate κ = κ0 + κex (where κex represents losses to the coupling waveguide
and κ0 all other optical losses) as well as the optical noise terms δsin, δscav and the
thermal Langevin force, which we express as a rate δfth by writing the physical force in
momentum units of �/2xzpm. This leads to the well-known Langevin equations of cavity
optomechanics [15, 16, 17]

ȧ(t) =
(
i∆− κ

2

)
a(t)− ig0q(t)a(t) +

√
κex(s̄in + δsin(t)) +

√
κ0δscav(t) (S11)

q̇(t) = Ωmp(t) (S12)

ṗ(t) = −Ωmq(t)− 2g0a
†(t)a(t)− Γmp(t) + δfth(t), (S13)

where the convention ∆ = ωl − ωc was used to denote the detuning of the laser (angular)
frequency ωl from the bare cavity resonance frequency ωc, and a is expressed in a frame
rotating at ωl.

In order to accurately model the response of the optomechanical system over a wide
range of parameters (detuning, Fourier frequency, optical and mechanical excitation) for
a single set of parameters, we have refined this generic model by including other effects
which are known to be inherent to most optical microcavities, and are discussed in the
following.

Photothermoelastic backaction. Thermoelastic forces driven by temperature gradients
induced by light absorption can induce mechanical displacements. The starting point to
model these displacements are the coupled equations of motion known from the standard
theory of thermoelasticity [13]

µ �∇2�u+ (λ+ µ)�∇(�∇ · �u) + �f = (3λ+ 2µ)α�∇θ + ρ�̈u (S14)

kt�∇2θ − ctρθ̇ = (3λ+ 2µ)αT0(�∇ · �̇u)− v κabsa
†a. (S15)

These equations connect the displacement field �u(�r, t) and the temperature elevation
θ(�r, t) above the mean temperature T0. Here, λ and µ are the Lamé parameters, α the

12
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thermal expansion coefficient, ρ the mass density, �f a body force (e.g. due to radiation
pressure), kt the thermal conductivity, κabs the photon absorption rate, ct the heat ca-
pacity, and the function v(�r) describes the spatial distribution of the light absorption.
Evidently, a thermoelastic body force

�fte(�r, t) = −(3λ+ 2µ)α�∇θ(�r, t) (S16)

acts on the mechanical modes of the structure when a temperature gradient �∇θ(�r, t) is
present. In the scalar representation of the mechanical dynamics, we therefore have to add
a thermoelastic force fte(t) proportional to the material parameters λ, µ and α, as well as
an overlap integral of the mechanical mode’s displacement pattern and the temperature
gradient �∇θ(�r, t). Assuming that the temperature gradients are predominantly driven by
the absorption of laser light in the resonator, one can express the scalar photothermoelastic
force as

fpte(t) = χpte(t) ∗ κabsa
†(t)a(t), (S17)

where we have absorbed the spatial overlap integrals between the mechanical and (the
gradient of) the thermal modes, as well as the thermal modes and the spatial pattern of
light absorption into the magnitude of the function χpte(t). The temporal dynamics of the
adjustment of the relevant temperature gradients to a changing amount of light absorption
is represented by the time-dependence of χpte(t) (“∗” denotes a convolution). Note that
while this formulation accounts for the quantum fluctuations of the intracavity field a(t),
the statistical nature of photon absorption events is neglected. This is justified considering
that the quantum fluctuations of optical heat deposition (“photothermoelastic shot noise”)
have a much smaller effect on the mechanical mode than the direct fluctuations of the
radiation pressure term 2g0 a

†a.
Dynamic photothermorefractive frequency shift. A temperature elevation θ(�r, t) within

the optical mode volume furthermore changes the refractive index, and therefore the
optical resonance frequency. In analogy to the description in the previous section, we are
using a simple scalar description of the form

∆ωptr(t) = χptr(t) ∗ κabsa
†(t)a(t) (S18)

for this frequency shift, where the response function χptr(t) accommodates spatial over-
lap integrals of the light absorption pattern v(�r) and the thermal modes as well as the
temporal dynamics of the latter, and, in addition, the spatial sampling of the induced
refractive index changes

∆n(�r, t) =
dn

dT
θ(�r, t) (S19)

by the optical mode.
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Thermorefractive noise. The local temperature elevation θ(�r, t) also undergoes thermal
fluctuations—independent of the presence of light. Within a volume V , they amount to
squared fluctuations of [18]

〈
θ(�r, t)2

〉
V
=

kBT
2
0

cpρV
. (S20)

The spatial distribution of these fluctuations can be calculated using a Langevin ansatz
[19], by adding a fluctuational source term to the heat diffusion equation (S15). Predomi-
nantly via the thermorefractive effect (dn/dT �= 0), the resulting temperature fluctuations
again induce resonance frequency fluctuations δωtr(t). Its temporal correlation function
(or equivalently, power spectral density) have been estimated for simple whispering-gallery
mode resonator geometries [20, 21, 22].

Taking these additional three effects into account, the equations of motion can be
written as

ȧ(t) =
(
i(∆−∆ωptr(t)− δωtr(t))−

κ

2

)
a(t)− ig0q(t)a(t)+

+
√
κex(s̄in + δsin(t)) +

√
κ0δscav(t) (S21)

q̇(t) = Ωmp(t) (S22)

ṗ(t) = −Ωmq(t)− 2g0a
†(t)a(t)− Γmp(t) + δfth(t) + fpte(t). (S23)

3.3 Linearized model

A large coherent field sent to the optomechanical system induces a relatively large classical
intracavity field ā, and induces a displacement of the mechanical mode by q̄. If the
system is stable around this steady-state, the dynamics of the small fluctuations around
this equilibrium are described by a set of equations obtained via the substitution a(t) =
ā + δa(t) and q(t) = q̄ + δq(t), and retaining only first-order terms in the fluctuations.
This yields

δ̇a(t) =
(
+i∆̄− κ

2

)
δa(t)− iκabsāχptr(t) ∗ (ā∗δa(t) + āδa†(t))− ig0āδq(t)−

− iāδωtr(t) +
√
κexδsin(t) +

√
κ0δscav(t) (S24)

Ω−1
m

[
δq̈(t) + Γm δq̇(t) + Ω2

m δq(t)
]
= −2g0(āδa

†(t) + ā∗δa(t))+

+ δfth(t) + χpte(t) ∗ (āδa†(t) + ā∗δa(t)) (S25)
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with ∆̄ = ωl− (ωc + g0q̄ + κabs|ā|2(χptr(t) ∗ 1)). This set of equations is best solved in the
Fourier domain, yielding

(
−i(∆̄ + Ω) + κ/2

)
δa(Ω) = −iκabsāχptr(Ω)(ā

∗δa(Ω) + āδa†(Ω))− ig0āδq(Ω)+

− iāδωtr(Ω) +
√
κexδsin(Ω) +

√
κ0δscav(Ω) (S26)

−Ω2 − iΩΓm + Ω2
m

Ωm

δq(Ω) = (−2g0 + χpte(Ω)) (āδa
†(Ω) + ā∗δa(Ω)) + δfth(Ω). (S27)

For simplicity, we refer to the Fourier transform of the respective functions by simply
writing them with a frequency (Ω) argument. Note that δa†(Ω) denotes the Fourier
transform of δa†(t), equal to [δa(−Ω)]†; and that [δq(−Ω)]† = δq(Ω) for the Hermitian
operator δq(t).

To further simplify the problem, we approximate the response functions of the pho-
tothermal effects by a single-pole, low-pass response, assuming implicitly that the rel-
evant temperature (gradient) distributions adjust themselves only with a certain delay
to a change in the absorbed optical power. Assuming that this delay is larger than the
relevant oscillation periods considered here, one can approximate

χptr(Ω) ≈
gptr
κabs

Ωm

−iΩ
(S28)

χpte(Ω) ≈ 2gpte
Ωm

−iΩ
(S29)

and finally obtains

(
−i(∆̄ + Ω) + κ/2

)
δa(Ω) = āgptr

Ωm

Ω
(ā∗δa(Ω) + āδa†(Ω))− ig0āδq(Ω)+

− iāδωtr(Ω) +
√
κexδsin(Ω) +

√
κ0δscav(Ω) (S30)

−Ω2 − iΩΓm + Ω2
m

Ωm

δq(Ω) = −2

(
g0 − igpte

Ωm

Ω

)
(āδa†(Ω) + ā∗δa(Ω)) + δfth(Ω). (S31)

These equations are used to calculate the coherent response and fluctuation spectra (cf.
sections 3.5, 3.6).

3.4 Homodyne detection

The optomechanical experiment is embedded into one arm of a balanced homodyne inter-
ferometer. At the initial beamsplitter, the laser field (and fluctuations in the fiber mode)
are split up into a ‘local oscillator’ arm, and the arm that serves as input to the cavity:

sin =
√
1− rslas −

√
rsbs (S32)

slo =
√
rslas +

√
1− rsbs, (S33)
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evidently valid both in time and frequency domain. Here, we also take into account the
vacuum fluctuations δsbs entering the beamsplitter at the unoccupied port,

slas = s̄las + δslas (S34)

sbs = δsbs. (S35)

The field sin drives both the mean field ā and the field fluctuations within the cavity, as
described in the previous section. The intracavity field a, in turn, couples back into the
single-mode fiber taper, and the usual input-output formalism gives the field sout at the
output of the cavity via the relation

sin − sout =
√
κexa (S36)

We furthermore take into account that only a fraction ηcryo of the light power at the output
of the cavity is measured as ‘signal’ in the homodyne detector due to optical losses, e.g.
in the cryostat. For ηcryo < 1, we again have to account for quantum vacuum δscryo that
enters the optical mode,

ssig =
√
ηcryosout +

√
1− ηcryoscryo (S37)

scryo = δscryo. (S38)

Finally, in the homodyne receiver, the differential signal

δh = s̄loe
+iφloδs†sig + s̄∗loe

−iφloδssig + s̄sige
−iφloδs†lo + s̄∗sige

+iφloδslo (S39)

is measured. The fluctuational terms δh and δq of interest can then be expressed as a
linear function of the fluctuations driving the system,

(
δh
δq

)
= M ·

(
δslas δs†las δsbs δs†bs δscav δs†cav δscryo δs†cryo δωtr δfth

)T
. (S40)

Here, the coefficients of the matrix M follow directly from the relations (S30)-(S39).

3.5 Calculation of noise covariances

We assume that all input noise terms of eq. (S40) can be described by zero-mean Gaussian
noise operators whose variances are known. Representing the covariances between two
noise operators x and y as a symmetrized spectrum S̄xy(Ω) defined according to

1

2
〈{x(Ω), y(Ω′)}〉 = 2πS̄xy(Ω) δ(Ω + Ω′), (S41)

the only non-zero covariances are characterized by the spectra

S̄δs†lasδslas
(Ω) = S̄δs†cavδscav

(Ω) = S̄δs†bsδsbs
(Ω) = S̄δs†cryoδscryo

(Ω) =
1

2
(S42)
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for the optical quantum noise entering the system,

S̄δfthδfth(Ω) ≈ 4n̄mΓm (S43)

for the thermal Langevin force, where we have assumed n̄m ≈ kBT/�Ωm � 1, and

S̄δωtrδωtr(Ω) = S̄trn(Ω), (S44)

for the thermorefractive noise [20], whose contribution we found to be negligible in the
data presented in this manuscript. By the linearity of equation (S40), it follows that
the covariance matrix Nout of the output noise operators is then related to the input
covariance matrix Nin by the simple expression

Nout = M(+Ω) ·Nin ·M(−Ω)T . (S45)

3.6 Coherent dynamics of the system

In order to calculate the coherent response of the system to the probing by a phase-
modulated input, eq. (S40) can be used. By assuming a sufficiently narrow detection
bandwidth and/or sufficiently large phase modulation of depth δϕ, one can set

δs†cav ≈ δscav ≈ δs†bs ≈ δsbs ≈ δs†cryo ≈ δscryo ≈ δfth ≈ δωtr ≈ 0 (S46)

δslas = is̄lasδϕ, (S47)

and calculate the frequency-dependent transfer function from a phase modulation δϕ to
the homodyne signal δh.

This coherent response is obviously directly measured in the sideband sweeps that we
routinely perform (cf. section 1.1). Moreover, by multiplication of the (complex) spectrum
of the excitation pulse with this transfer function, the response of the homodyne signal
in the time domain can be numerically determined via the inverse Fourier transform.

3.7 Analysis of the coherent response

The coherent response spectra are important to accurately extract the different parameters
of the optomechanical interaction as well as to calibrate the mechanical noise spectra. A
typical coherent response is shown in Fig. 7a. The Lorentzian peak centered around
Ωmod = 140 MHz results from the absorption of the upper modulation sideband by the
cavity and reflects the optical response of the system. The maximum of the homodyne
signal is obtained when the modulation sideband is resonant with the cavity. Hence, the
center frequency and width of this peak correspond to the detuning |∆| and the linewidth
κ of the cavity, respectively. The sharp feature at Ωmod = Ωm is the manifestation of
Optomechanically Induced Transparency [23]; an interference effect due to the resonant
excitation of the mechanical mode. For weak coupling power and/or large detuning, the
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dynamics of the mechanical mode is hardly affected by the optomechanical interaction
and the width of the dispersive feature is given by the mechanical linewidth Γm.

For larger laser power, the width of the OMIT window increases, reflecting the width of
the damped mode Γm +Ω2

cκ/ (κ
2 + 4(∆ + Ωm)

2). Hence, the fit of the coherent response
allows to extract the coupling rate Ωc and the corresponding intracavity field ā. We
introduce ā0 ≡ ā/ κ/2

−i∆̄+κ/2
to obtain a parameter independant of detuning. The model of

eq. (S40), assuming pure radiation pressure backaction, fits the measurements well (cf.
Fig. 7a). However, as can be seen in Fig. 7b, a small systematic deviation appears for high
coupling power. This systematic effect is very well reproduced by the model including the
photothermoelastic effect.

Finally, Figure 7c shows a series of coherent response spectra taken for decreasing
laser detunings, and a laser power of 0.6 mW. The observed increase of the amplitudes for
small detuning can be fitted accurately by introducing the photothermorefractive effect
in the model (red lines). The parameter gptr introduced here is dependent on detuning
since the thermorefractive coefficient dn

dT
depends on temperature.

For example, we have extracted from the fits to the full detuning series of Fig. 2
of the main manuscript Ωm/2π = 78.2MHz, κ/2π = 6.0MHz, ā0 = 14.2 · 103 (with
g0/2π = 3.4 kHz), gpte/2π = −122Hz and gptr/2π = 0.32Hz (at the lower mechanical
sideband).
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Supplementary Figure 7: Fitting the model to the coherent response. (a) A co-
herent response spectrum taken with a power of 0.56 mW, at T=0.65 K. (b) Spectrum
for 1.4 mW, at T=0.8 K with fits including the photothermoelastic effect (red line) and
without (yellow dashed). (c) Spectra for 0.6 mW at T=0.75 K, for various detunings. The
photothermorefractive effect is included in the fitted model and accounts for the increased
amplitude for small detuning.
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3.8 Extraction of the decoherence rate

The fits of the coherent response spectra determine all parameters characterizing the
optomechanical interaction, and therefore the transduction of mechanical displacement
fluctuations to optical fluctuations. The spectral shape of the noise originating from the
Langevin force is thus fixed, so that the amplitude of this contribution can be fitted using
the model of eq. (S45). As we fit the spectral density of the actually measured voltage
signal, these extracted amplitudes depend on the gain of the subsequent detection chain,
which is not precisely known.

This ambiguity is removed by a calibration technique [5] based on a reference phase
modulation, which allows to relate noise spectra taken under arbitrarily different acquisi-
tion conditions. In this manner, we link the low-temperature noise spectra to a measure-
ment at a higher cryostat temperature (4 K), in which a high helium gas pressure, and low
optical power (∼ 100 nW) ensure the thermalization of the sample, so that the Langevin
force is known to an estimated accuracy of 3%. In this high-temperature measurement, a
known phase modulation is applied, whose amplitude can be compared with the coherent
response spectra acquired with every low-temperature measurement. Assuming that no
drift occurs in the phase modulation chain, this method allows to absolutely calibrate the
Langevin force—and therefore the mechanical decoherence rate—in the low-temperature
measurements. Importantly, this derivation reveals possible changes of the decoherence
rate both due to a changed temperature (bath occupation n̄m) and mechanical dissipation
rate Γm.

3.9 Error analysis

We use the large number of traces acquired during a detuning sweep to estimate an error
on each of the four parameters assumed to be independent of the detuning (Ωm, κ, ā0,
gpte). This is achieved by successively letting each of these parameters vary with the
detuning, while the three others are still fitted globally. The error on each parameter
X is obtained by calculating the standard deviation ∆X =

√
〈(X −X0)2〉, where X0 is

the value obtained when all four parameters are kept constant over the whole detuning
range. Advantageously, this procedure reflects also systematic errors due to drifts of the
experimental settings over the detuning series, and physical effects that are not captured
by the model. The following uncertainties were obtained with this method for the run
presented in Fig. 2 of the main manuscript: Ωm/2π = (78.2260 ± 0.0007)MHz, κ/2π =
(6.04 ± 0.08)MHz, ā0 = (14.2 ± 0.2) × 103, gpte/2π = (−122 ± 52)Hz. These errors,
by affecting the shape of the expected noise spectra, also translate in an error on the
fitted decoherence rate and occupation. A Monte-Carlo approach is used to assess the
final error on γ and n̄. The fit of the noise spectrum is repeated with a set of randomly
drawn parameters, assuming an independent normal distribution for each of the previous
parameters. Importantly, the resulting uncertainty depends on the particular detuning
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point. On the lower optomechanical sideband, the standard deviation of the results is
given by (∆γ/γ)model = 6% and (∆n̄/n̄)model = 4%. Another source of uncertainty for
these two parameters is the independent calibration of the optomechanical transduction
that we estimate to be on the order of ∆calib = 3% from the scatter between calibration
measurements taken at different probing power. Finally, as discussed in section 1.2, an
uncertainty ∆GAWBS is quadratically added to account for the possible presence of GAWBS
in the optical fibers before the cavity. The total error for this example is given by

∆γ

γ
=

√(
∆γ

γ

)2

model

+∆calib
2 +∆2

GAWBS = 10%

∆n̄

n̄
=

√(
∆n

n

)2

model

+∆calib
2 +∆2

GAWBS = 7%.
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