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Abstract: Upconversion luminescence from erbium ions placed in the
near field of subwavelength aperture arrays is used to investigate field en-
hancement of incident near-infrared light in such nanostructures. We study
field enhancement due to the excitation of both propagating and localized
surface plasmon resonances in arrays of square and annular apertures in a
Au film. The conversion of 1480 nm excitation light to 980 nm emission
is shown to be enhanced up to a factor 450 through a subwavelength hole
array. The effects of array periodicity and aperture size are investigated. It
is shown that a Fano model can describe both far-field transmission and
near-field intensity. The upconversion enhancement reveals the wavelength
and linewidth of the surface plasmon modes that are responsible for
extraordinary transmission in such arrays. Angle-dependent measurements
on annular aperture arrays prove that the field enhancement due to localized
resonances is independent of the incident angle. These experiments provide
insight in the mechanisms responsible for extraordinary transmission and
are important for applications that aim to exploit near-field enhancement in
nanostructured metal films.
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1. Introduction

There has been a large interest in subwavelength aperture arrays in metallic films ever since
the first report of extraordinary transmission through such structures [1]. Much effort has been
dedicated to elucidating the fundamental principles that govern the far-field properties of aper-
ture arrays [2, 3]. Additionally, the enhancement of the near field in aperture arrays due to
the excitation of optical resonances has been recognized to yield many possible applications.
Among those applications are efficient sensing [4, 5], strong control over light extraction [6, 7]
and the enhancement of nonlinear effects [8–11]. Broadly speaking, two types of resonances
can be distinguished that are responsible for the main transmission peaks observed in far-field
transmission spectra as well as for the accompanying enhancement of the near field. The first
type relies on the resonant excitation of surface waves (surface plasmon polaritons (SPPs) for
optical frequencies) propagating along the metal film surface. As the excitation is due to grat-
ing diffraction, this effect depends strongly on incident angle and wavelength. The responsible
surface waves can be described as eigenmodes of the corrugated metal surface [12]. Secondly,
properly shaped apertures can support localized plasmonic modes that can lead to very large
transmission [13, 14]. In particular, arrays of annular apertures exhibit a strong transmission
resonance [15–17]. This resonance is associated to the cutoff condition for the TE11 mode
propagating inside individual apertures [18–21]. A single aperture can be viewed as a truncated
waveguide. Bounded by the air and substrate outside the metal film, it forms a low quality factor
optical cavity. At cutoff, the wavevector of the TE11 mode propagating inside this waveguide
approaches zero, which results in a cavity resonance that is independent of the metal film thick-
ness. Because of the localized nature of the mode, this transmission resonance is independent of
incident angle and polarization [22], which is a large benefit for many applications. Moreover,
the resonance has a wide bandwidth.

In this work, we investigate field enhancement in aperture arrays supporting both types of
resonances using the photoluminescence from emitters placed in the near field of the metallic
nanostructures. The emitters are erbium ions located in the sapphire substrate at an average
depth of 35 nm below the structured Au film. The Er ions can convert infrared radiation with a
free-space wavelength of 1480 nm to emission at shorter wavelengths (most notably at 980 nm)
through an upconversion process [23, 24]. The upconversion luminescence emitted into the far
field is used as a direct probe of the local field intensity at the position of the Er ions. We
find that the emitted upconversion luminescence from Er ions excited through hole arrays sup-
porting propagating surface plasmon resonances can be enhanced up to a factor of 450. We
investigate the influence of hole size and array periodicity on the field enhancement, and show
the connection between far-field transmission and near-field intensity in a Fano model. Annular
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aperture arrays that exhibit localized plasmon resonances also lead to upconversion enhance-
ments, albeit of smaller magnitude. We experimentally demonstrate that the field enhancement
due to the excitation of such modes is independent of incident angle.

We note that enhancing the strength of the upconversion process with plasmonic nanostruc-
tures is a valuable goal in itself. Upconversion is of importance in lasers [25–27], display tech-
nology [28], and luminescent probes in microscopy [29]. Moreover, it has been proposed as a
possible route to enhance the efficiency of silicon solar cells. By converting part of the infrared
solar radiation that is not captured by a silicon solar cell to radiation with shorter wavelengths,
this part of the solar spectrum could be absorbed as well [30, 31]. However, all of these ap-
plications are hindered by the fact that the upconversion process is nonlinear in the excitation
power and — in the case of rare earth ions — by the fact that typical absorption cross sections
are small. Both facts limit the upconversion efficiency, especially at small pump powers. By
making use of the enhanced fields of plasmonic resonances (which have large cross sections)
as an intermediate step in the excitation of the emitters by incident light, their cross section can
be effectively enhanced. This could lead to an increased upconversion efficiency [31–34], from
which all of the above applications might benefit.

2. Methods

The aperture arrays are fabricated in a 110 nm thick Au film on a sapphire substrate. The
substrate (refractive index 1.74) is first implanted with 200 keV Er+ ions at a fluence of 7×
1015 cm−2 through a 10 nm thick Ge conducting layer, which is subsequently removed. This
results in a Gaussian depth profile of implanted Er3+ ions at an average depth of 35 nm below
the sapphire surface. The profile has a standard deviation of σ = 12 nm, as simulated with the
Monte Carlo program SRIM [35]. The sample is annealed under an Ar atmosphere at 900 ◦C
for one hour to remove implantation related defects and activate the Er ions [36].

The arrays of holes in a Au film are fabricated by electron beam lithography and liftoff.
The structures are patterned in a layered resist stack of 300 nm photoresist (S1813), 20 nm
Ge and 100 nm negative electron beam resist (Ma-N 2401). The pattern is transferred to the
layers underneath by reactive ion etching. The 110 nm thick Au film is evaporated directly on
the substrate. The photoresist is finally stripped in a liftoff process. The size of each aperture
array is 50×50 μm2. Many arrays are fabricated, of which the period as well as aperture size
and shape are varied. Two general aperture shapes are considered: square and annular (also
termed coaxial). Figures 1(a,b) show SEM micrographs of details of both an array of square
holes and an array of annular apertures. The annular apertures are designed to be square rather
than circular, but these two types of hole shape are known to exhibit comparable behavior [37].

The measurement geometry is schematically depicted in Fig. 1(c). The arrays are illumi-
nated from the air side of the Au film at normal incidence with a numerical aperture of 0.02,
effectively illuminating individual arrays completely. The excitation source is a fiber-pigtailed
1480 nm CW diode pump laser (Fitel). To record broad-band transmission spectra, a fiber-
coupled halogen lamp is used. Light from the sample is collected through the substrate using a
microscope objective (NA=0.75), and focused on the entrance facet of a 100 μm core diame-
ter optical fiber. Because the magnification of the microscope is 12.5×, only light originating
from the center of the illumination spot is detected, and the illumination within this collection
spot can therefore be considered as homogeneous. The collected Er upconversion emission or
white light transmission is then led to a spectrograph and a Si CCD detector to record spectra
for visible wavelengths, or to a spectrograph and a InGaAs photodiode array detector to record
infrared transmission spectra.

For the angle-dependent measurements reported in section 5, the illumination optics are re-
placed by a microscope objective with an NA of 0.75. By limiting the width of the beam en-
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Fig. 1. (a) and (b) SEM micrographs of details of fabricated arrays of square and annular
apertures, respectively. Scale bars are 1 μm. (c) Schematic depiction of the measurement
geometry. The sample is illuminated with 1480 nm pump light, and upconversion lumines-
cence from Er ions implanted in the sapphire substrate is collected through the substrate.
(d) Er3+ 4 f level diagram indicating the upconversion mechanism that leads to the pop-
ulation of Er3+ levels emitting at wavelengths of 980, 660, and 550 nm under 1480 nm
excitation.

tering the back aperture of the objective, the illumination NA is effectively reduced to 0.1.
The illumination angle is then controlled by displacing the beam that enters the objective with
respect to the optical axis.

Upconversion emission from the Er ions is used as a probe of the local intensity of the
1480 nm excitation laser light. A level diagram of the 4 f energy levels in Er3+ is shown in
Fig. 1(d). The pump light excites Er ions to the first excited state, from which multiple upcon-
version processes can occur to populate higher Er levels [23,24]. Two neighboring Er ions that
are both excited can exchange energy in a dipole-dipole interaction to promote one to the 4I9/2

level. The excited Er ion then quickly relaxes to the second excited state (4I11/2), which can emit
a photon with a wavelength of 980 nm (see Fig. 1(d)). This process, based on Förster transfer
between two excited Er ions, is called cooperative upconversion. A competing process is ex-
cited state absorption, in which a second pump photon is directly absorbed by an Er ion residing
in the first excited state. Excited state absorption is especially strong for large incident fluxes.
At small pump powers, both processes will result in a quadratic dependence of the 980 nm up-
conversion photoluminescence on the excitation power. However, at higher excitation powers
the pump power dependence can deviate from this quadratic dependence due to saturation of
the Er levels. Higher order upconversion processes can also populate Er levels emitting at wave-
lengths of 660 nm and 550 nm (see Fig. 1(d)), but in this work we will focus on the emission
from the 4I11/2 level at 980 nm. Because the emission wavelength is spectrally separated from
the excitation wavelength, plasmon resonances will not simultaneously affect both excitation
and emission channels. It is however impossible to exclude any effects on the upconversion
emission due to the presence of the metal nanostructures, such as an altered branching ratio due
to a changed local density of states at the emission wavelength [33] or emission into preferred
directions due to grating diffraction. The effect of the latter is suppressed by collecting with a
large numerical aperture. As we will show, it is possible to ascribe all observations in this paper
to modifications of the Er excitation rate due to a variation in pump intensity in the near field
of the aperture arrays.

The depth profile of Er ions is designed such that the ions do not directly quench to the Au
film [38]. At a wavelength of 1480 nm, the intensity of SPPs on an uncorrugated Au/sapphire
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interface decays into the substrate to 1/e of the maximum value within a distance of ∼390 nm.
This means the intensity varies negligibly over the Er distribution. Nonetheless, near a corru-
gated film it is possible that the field varies within shorter length scales. We should consider the
measured upconversion intensity therefore to be related to the field intensity averaged over the
spatial distribution of the implanted Er ions.

3. Field enhancement in hole arrays: dependence on structural parameters

We first focus our attention to arrays of square-shaped holes. Figure 2 shows a white light
transmission spectrum of an array with a periodicity of 810 nm and a hole diameter of 290 nm,
normalized to the transmittance through the sample without the Au film. It shows three distinct
transmission peaks for wavelengths longer than 800 nm. These maxima have been attributed to
the excitation of surface plasmon polaritons that are excited when the condition

kSPP = k0 sinθ0 +
2πi
a

x̂+
2π j
a

ŷ (1)

is satisfied [1, 39, 40]. Here k0 and θ0 are the free-space wavevector and angle of incidence,
respectively. The array pitch is given by a. The integers i and j together specify the diffraction
order (i, j) that couples to SPPs with wavevector kSPP. It is important to note that kSPP is a priori
unknown, since it is an eigenmode of the corrugated surface (i.e. a pole of the scattering matrix
of the array), and it depends on the exact geometry of the structure [12]. The two peaks with
longest wavelengths correspond to excitation of the surface plasmon mode at the metal/sapphire
surface, and they are therefore expected to enhance the field at the position of the Er ions.

Fig. 2. (a) Transmission spectrum of a hole array in a Au film with a pitch of 810 nm. The
red dotted curve is a fit of the Fano model described in section 4. The vertical gray lines
indicate the resonance frequencies deduced from the Fano model, and the dashed gray lines
depict the Rayleigh conditions for different diffraction orders. (b) Transmission spectra
around the (±1,0) peak at the Au/Al2O3 interface for various array periods. (c) Evolution
of the same transmission peak with increasing hole size (indicated as diameter/period.)

The resonance wavelengths can be precisely tuned by varying the array periodicity, as can be
seen for the transmission peak associated to excitation of the surface wave at the Al2O3 inter-
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face by the (±1,0) diffraction order in Fig. 2(b). The wavelength of the transmission maximum
is a linear function of the periodicity to close approximation, since the SPP dispersion is nearly
linear in this frequency regime. In the following experiment the periodicity is chosen such that
the transmission peak coincides with the excitation wavelength of 1480 nm (see dashed line
in Fig. 2(b)). This periodicity is 810 nm, as in Fig. 2(a). The upconversion photoluminescence
spectrum as collected from that particular array is depicted by the red curve in Fig. 3, at an
excitation power of 200 W/cm2. Emission from four different Er manifolds that are all popu-
lated through upconversion processes is observed, at wavelengths of 550, 660, 810 and 980 nm.
Also plotted is the luminescence spectrum obtained under equal experimental conditions in the
absence of gold (through an aperture in the Au film of 50×50 μm2), multiplied by a factor
10. Clearly, the upconversion emission on the hole array is strongly enhanced with respect to
that reference. In the following, we define the ‘upconversion enhancement’ caused by an array
as the ratio of the collected upconversion photoluminescence intensity on that array and the
detected upconversion emission in a reference measurement in the absence of the Au film.

Fig. 3. Er upconversion spectra obtained from a hole array with a pitch of 810 nm (red)
and from a reference in the absence of the Au film (black) under 1480 nm pumping
at 200 W/cm2. Spectral resolution is ∼20 nm. The inset depicts the dependence of the
980 nm emission on 1480 nm pump power, measured on the array (red) and on the refer-
ence (black).

We note that the measured upconversion enhancement does not directly reflect the average
field enhancement at the position of the Er ions. The pump power dependence of the upcon-
version luminescence intensity is not a simple function such as a power law with a known
exponent, which would make extraction of the pump power enhancement straightforward. The
measured 980 nm upconversion emission as a function of 1480 nm pump power density is
plotted on a double-logarithmic scale in the inset of Fig. 3, both on the array (red) and on the
reference (black). For low pump powers, the upconversion luminescence can be seen to scale
roughly quadratically with the excitation power as expected, but for larger pump powers sat-
uration clearly occurs. By comparing the two curves, we can deduce a better estimate of the
pump power enhancement on the array. We extract the pump powers for which the collected
upconversion luminescence intensities on the array and on the reference are equal. The ratio of
these pump powers represents the average field intensity enhancement at the position of the Er
ions, since it tells us how much the pump intensity on the array can be diminished with respect
to that of the reference, to still result in the same amount of emission. We find a field intensity
enhancement of a factor 40. For practical reasons we will use the aforementioned upconversion
enhancement to compare the field enhancement on different arrays. We note that the upcon-
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version luminescence emitted at shorter wavelengths is even more strongly enhanced, as the
corresponding Er levels are populated through higher order nonlinear upconversion processes.
In the following, only the upconversion enhancement from the level emitting at a wavelength
of 980 nm is considered.

We now systematically vary the periodicity and the hole diameter. Figure 4 shows the up-
conversion enhancement at an incident flux of 2 W/cm2 as a function of array periodicity and
hole size (expressed as the hole diameter divided by the period). By varying the period in this
range, both the (±1,0) and the (±1,±1) transmission resonances corresponding to SPPs at the
Au/sapphire interface can be tuned to the excitation wavelength, at periods of approximately
800 and 1150 nm, respectively (see arrows in Fig. 4).

(1,0) SPP
excitation

(1,1) SPP
excitation

exc

Fig. 4. 980 nm upconversion enhancement (under 1480 nm pumping at 2 W/cm2) at an
emission wavelength of 980 nm on hole arrays as a function of array period and hole size.
Every point in the figure is derived from measurements such as in Fig. 3 on a corresponding
array.

For a given enhancement peak, a strong dependence of the upconversion luminescence on
the aperture size can be seen in Fig. 4. For the resonance excited with a period of ∼800 nm,
maximum field enhancement is observed for a hole size that is 0.36 times the period, giving
rise to a 450-fold upconversion enhancement. For larger holes, the field enhancement gradually
decreases. Increasing the hole size will increase the evanescent tunneling of light through the
holes as well as their scattering strength. Therefore the fraction of light coupled to SPPs will
increase with increasing diameter. This becomes apparent as a monotonous increase of the far-
field transmittance with increasing diameter [41], that is depicted in Fig. 2(c). The near-field
enhancement represented by the data in Fig. 4 on the other hand reveals the existence of an
optimum hole size. The stronger coupling between far-field radiation and SPPs for larger holes
results in a widening and a redshift of the transmission peak. Both effects can be observed in
the data in Fig. 4, as well as in the transmission spectra in Fig. 2(c). Unlike the far-field trans-
mittance, the near-field enhancement does not only scale with the fraction of light coupled to
SPPs, but also with the resonance linewidth. A larger quality factor of the SPP resonance results
in a stronger build-up of optical energy close to the array. A trade-off therefore exists between
quality factor and coupled fraction as the hole size is varied, resulting in an optimum hole size
that yields maximum field enhancement. Note that this optimum strongly depends on other pa-
rameters as well; most notably the film thickness and the illumination geometry. If the array
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would have been illuminated from the substrate side of the film, the exciting radiation would
not have needed to tunnel through the apertures before exciting SPPs at the Au/sapphire inter-
face, likely resulting in a stronger field enhancement at a smaller optimum hole size compared
to the geometry studied here.

4. The Fano model: far field transmission and near field enhancement

We also investigate the relation between far-field transmittance and near-field enhancement by
comparing their dependence on array periodicity. Figure 5 (red circles) shows the upconversion
enhancement as a function of period for a hole diameter of 0.42 times the period from Fig. 4.
Again, every data point represents a measurement on an array with a different periodicity. Also
indicated is the transmittance at the excitation wavelength of 1480 nm on those same arrays.
While both data sets show two maxima at similar periods (at 800 nm and ∼1150 nm), strik-
ing differences between the shapes of the curves can be observed. The transmission peaks are
wider, shifted to smaller pitches (corresponding to a spectral redshift), and pronouncedly more
asymmetric than the peaks observed in the near-field enhancement probed by the upconversion
emission.

Fig. 5. Comparison between the 980 nm upconversion enhancement (red) and the trans-
mittance at 1480 nm (black) as a function of the hole array period (hole diameter/period =
0.42). Each data point is measured on a different array. The curves are fits of a Fano model
to the data. The resonance wavelengths and widths derived from the Fano model fitted to
the transmittance data are imposed on the Fano model that is fitted to the upconversion
enhancement data. The Fano model correctly predicts both the position and linewidth of
the surface plasmon resonances, which are revealed by the upconversion enhancement.

These differences can be fully explained in terms of the Fano model [42]. The response of
a subwavelength hole array can be described as that of multiple discrete states (the surface
plasmon modes resonantly excited by various diffraction orders) coupled to a continuum (all
far-field scattering states) [43, 44]. The array can scatter light to the far field either directly
or by first exciting surface plasmons and subsequently radiating to the far field. These non-
resonant and resonant channels can interfere to produce asymmetric transmission spectra when
both contributions are of approximately equal magnitude, as the resonant channel acquires an
opposite phase as the frequency crosses the resonance [42]. The spectral shape, generalized to a
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system of multiple resonances with resonance frequencies ωr and linewidths γr is given by [17]

T (ω) = Ta
(1+∑r qr/εr)

2

1+
(
∑r ε−1

r
)2 , with εr =

ω −ωr

γr/2
, (2)

where Ta is a slowly varying background representing the non-resonant transmission channel
and qr is a shape parameter that is related to the strength and phase of the resonant channel
with respect to the non-resonant contribution. To illustrate the potential of this model we return
to the transmission spectrum of the hole array with a pitch of 810 nm shown in Fig. 2. We fit
Eq. 2 to this spectrum for wavelengths larger than 1000 nm, allowing for two resonances. The
non-resonant contribution Ta is assumed to scale as λ−4, in accordance with the transmittance
of a circular aperture of a perfectly conducting screen as given by Bethe [45]. The excellent
fit of the Fano model (the red dashed line in Fig. 2) to the experimental transmission spectrum
suggests that the most important physics of the system is indeed determined by the two surface
wave resonances. The transmission peaks are redshifted with respect to the fitted resonance
frequencies, which are indicated by the grey lines. For comparison, the Rayleigh conditions, for
which the right-hand side of Eq. 1 equals the wavevector of light in the bounding dielectrics,
are indicated by the grey dashed lines. As an aside, we note that the peak associated with
(±1,0) diffraction to surface plasmons at the Au/air interface can also be fitted when a third
resonance is introduced. However, in that case it becomes apparent that the assumption Ta ∝
λ−4 overestimates the direct transmission through the apertures at small wavelengths. A better
fit is obtained for Ta ∝ λ−3. An explanation for a deviation from Bethe’s theory could be sought
in the finite thickness of the metal film and metal absorption.

While the above analysis regards measurements of the far-field transmission, the Fano effect
can play a role in the near-field as well, because the field of the resonantly excited surface
plasmons can interfere with the incident field transmitted through the apertures. But because the
surface plasmon field is strongly enhanced (by a factor related to the resonance linewidth), the
shape parameter q will in general be much larger, making the resonant contribution dominant.
This is reflected in the differences between the transmittance and upconversion enhancement
data sets for varying periodicity in Fig. 5. We first fit the Fano model (Eq. 2) to the transmittance
data in Fig. 5, where ω is fixed by the laser wavelength and we assume that the resonance
frequencies ωr are inversely proportional to the periodicity a: ωr = cra−1 (the SPP dispersion
is nearly linear near 1480 nm). We again assume that the direct transmission through a single
hole scales as (λ/R)−4. The hole radius R scales linearly with the period a. Because the hole
density decreases quadratically with increasing period and the wavelength λ is fixed, we now
have to take Ta ∝ a2. An excellent fit to the transmittance data is obtained, depicted by the black
curve in Fig. 5. We then fit the upconversion enhancement data by taking the values for cr and
γr derived from the fit of the transmittance data, only fitting qr and Ta. The fit resulting from this
procedure is depicted as the red line in Fig. 5. In the analysis the measured power-dependence
(see the inset of Fig. 3) has been taken into account to yield the upconversion enhancement
from the field intensity enhancement given by the Fano model. A near-perfect fit to the data
is obtained. The larger relative contribution of the resonant channel to the near field results
in almost Lorentzian lineshapes of the resonances observed in the upconversion enhancement,
centered around the resonant periodicity. The transmission maxima are significantly shifted and
broadened with respect to the actual surface wave resonance, as is most clear for the peak at
a pitch of ∼1150 nm (for which the hole size and therefore the nonresonant contribution are
largest). Similar shifts were reported for second harmonic generation in aperture arrays [8, 10,
11]. The Fano interpretation presented here yields a new and powerful explanation for those
observations. These results show that the Fano model correctly predicts the wavelength and

#113798 - $15.00 USD Received 6 Jul 2009; revised 29 Jul 2009; accepted 30 Jul 2009; published 3 Aug 2009

(C) 2009 OSA 17 August 2009 / Vol. 17,  No. 17 / OPTICS EXPRESS  14595



spectral width of the surface plasmon eigenmodes of the corrugated surface. The luminescence
from emitters placed in the near field of hole arrays can be used to experimentally reveal the
surface modes that are responsible for the extraordinary transmission phenomenon [1, 12, 40].

5. Field enhancement in arrays of annular apertures: propagating and localized reso-
nances

The field enhancement in arrays of round or square subwavelength holes depends strongly on
the frequency and the angle of incidence, as it relies to a large degree on grating diffraction
(see Eq. 1). In contrast, field enhancement due to localized resonances such as those supported
by annular apertures does not suffer from this limitation. The transmission spectra of arrays
of annular apertures can exhibit features that are due to the excitation of both localized and
propagating modes [17, 19]. Figure 6(a) shows the transmission spectra of annular aperture
arrays in Au consisting of apertures of varying size. The array period is kept constant at 800 nm.
We denote the length of the side of the Au island as D1 and the length of the side of the total
aperture as D2 (see inset in Fig. 6(b)). Both D1 and D2 are continuously increased, starting from
array A (dark blue) to array C (dark red). Due to fabrication intricacies, it was not possible to
keep the ratio of D1 to D2 perfectly constant throughout the series. Therefore, we include SEM
micrographs of three of the annular aperture shapes in the legend of Fig. 6. The transmission
spectrum of array A shows a strong resemblance to that of an array of square holes in the
absence of the central Au island (black), displaying the diffractive resonances described in the
previous sections. As the aperture size increases, the transmission peaks broaden and increase in
magnitude, until for the largest apertures (array C) a single broad transmission peak dominates
the spectrum for wavelengths larger than 1100 nm, which we attribute to a localized resonance.
These aperture dimensions agree roughly to the cutoff condition of the TE11 mode in a perfectly
conducting waveguide [20], which scales to first order with (D1 +D2). Note that grating effects
observed for the regular holes such as the minimum around 1400 nm are in this case largely
suppressed.

A

B

C

W D1

D2

D +1 D (nm)2

200 300 400

W
/D

2

Fig. 6. (a) Transmission spectra of annular aperture arrays for increasing aperture size (ar-
ray period 800 nm). The black curve is the transmittance of an array of square holes with
the same period. (b) 980 nm upconversion enhancement (1480 nm pump at 2 W/cm2) as a
function of the main parameters describing the shape of the annular apertures: the sum of
D1 and D2, and the width of the air gap W expressed as a fraction of the total aperture size
D2.

In Fig. 6(b) we plot the measured upconversion enhancement on a collection of arrays with
varying aperture dimensions. The horizontal axis specifies the sum of D1 and D2 of the an-
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nular apertures, and the vertical axis denotes the width of the air gap between the central Au
island and the continuous Au film W , expressed as a fraction of the total aperture size D2. The
periodicity of all arrays is 800 nm, and the excitation power is 2 W/cm2. The overall trend in
Fig. 6(b) is that largest upconversion enhancements are observed for the smaller radii. Enhance-
ments of over a factor 100 are observed for radii around 100 nm. The maximum upconversion
enhancement factor is achieved on array A, which exhibits a transmission maximum related
to the excitation of propagating surface plasmons that is resonant with the 1480 nm excitation
wavelength. The magnitude of the enhancement is a factor 370, comparable to the maximum
enhancement observed on arrays of square holes. Array C, which supports a localized reso-
nance (see Fig. 6(a)), yields a lower enhancement factor of approximately 10. Nonetheless, the
field enhancement in this structure is larger than in structures with slightly different gap widths
or sizes, which we attribute to the enhanced spectral overlap of the corresponding localized
resonance to the excitation wavelength for this aperture shape.

Finally, we investigate the effect of the angle of incidence on the field enhancement due
to either propagating or localized resonances. Figure 7 shows the measured upconversion en-
hancement on three different aperture arrays as a function of angle of incidence as described in
section 2. The incident light is p-polarized. As expected, the upconversion enhancement on ar-
ray A, which is associated to the excitation of propagating SPPs, shows a strong dependence on
the incident angle, vanishing for angles larger than 10◦. Note that the maximum enhancement
at normal incidence is now reduced compared to that in Fig. 6(b) due to the use of a larger NA.
The maximum enhancement on array B is observed for an incident angle of ∼ 6◦. For this array,
the resonance was not tuned exactly to the laser wavelength at normal incidence. Instead, Eq. 1
is satisfied at a slightly different angle. The upconversion enhancement diminishes less rapidly
for larger angles than for array A, since the resonance width is larger in this case. Nonetheless,
still a clear angle-dependence is observed. Array C does not show an effect of the incident angle
on the upconversion enhancement, which is ∼10 for the angular range studied here. This shows
that the field enhancement due to localized plasmonic resonances in annular aperture arrays is
indeed independent on the incident angle.

Fig. 7. 980 nm upconversion enhancement as a function of incident angle for three differ-
ent annular aperture arrays specified in Fig. 6 (1480 nm pump at 16 W/cm2). The field
enhancement that is caused by a localized resonance (array C) is independent of the angle
of incidence.
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6. Conclusions

We have shown that Er upconversion luminescence can be used to probe the field enhancement
in subwavelength aperture arrays. Field enhancement due to the excitation of both propagating
and localized resonances in aperture arrays was studied. In hole arrays supporting propagat-
ing resonances, an enhancement of the 980 nm upconversion luminescence of Er ions under
1480 nm pumping by a factor 450 is demonstrated. This maximum upconversion enhancement
is achieved for a hole size that balances SPP coupling efficiency and resonance linewidth. We
note that the field enhancement can be further increased by changing the experimental geom-
etry. The evanescent tunneling of the excitation light incident from the air side of the sample
to excite SPPs at the substrate side of the sample (where the Er ions are located) limits the
measured upconversion enhancement in the present geometry.

We confirm that the Fano model accurately predicts the frequencies and linewidths of the res-
onances that cause the extraordinary transmission phenomena. These properties are revealed by
observing the Er upconversion enhancement. The relative strength of the resonant contribution
to the near-field enhancement with respect to the non-resonant contribution is much larger than
the ratio of both contributions in far-field transmission spectra. This results in much more sym-
metric lineshapes of the upconversion enhancement. The transmission peaks are significantly
redshifted from the spectral position of maximal field enhancement.

We demonstrate that the transmission spectra of annular aperture arrays can be tuned by vary-
ing the aperture size, from an array exhibiting propagating surface plasmon resonances to one
that supports localized plasmon resonance in the individual apertures. While the field enhance-
ment is smaller in the latter case, we show experimentally that, unlike the field enhancement
related to the excitation of propagating SPPs, this enhancement is independent of the angle of
incidence.

This work reveals basic mechanisms governing near-field enhancement in metallic subwave-
length aperture arrays, which is important for many practical applications of such nanostruc-
tures. In doing so, it sheds light on the mechanisms behind far-field extraordinary transmission
properties as well.
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