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We propose a novel type of optomechanical coupling which enables a tripartite interaction between a
quantum emitter, an optical mode, and a macroscopic mechanical oscillator. The interaction uses a mechanism
we term mode field coupling: a mechanical displacement modifies the spatial distribution of the optical mode
field, which, in turn, modulates the emitter-photon coupling rate. In properly designed multimode
optomechanical systems, we can achieve situations in which mode field coupling is the only possible
interaction pathway for the system. This enables, for example, swapping of a single excitation between emitter
and phonon, creation of nonclassical states of motion, and mechanical ground-state cooling in the bad-cavity
regime. Importantly, the emitter-phonon coupling rate can be enhanced through an optical drive field, allowing
active control of the emitter-phonon coupling for realistic experimental parameters.
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Interfacing different quantum systems, such as atoms,
photons, and phonons, is a key requirement for quantum
information processing. The well-established framework
of cavity quantum electrodynamics (CQED) interfaces
photons—ideal for communication—to natural or artifical
atoms (quantum emitters, QEs), whose strong nonlinear-
ities enable quantum processing. Mechanical resonators
have recently come to the forefront due to their large
coherence times and their interaction with photons in cavity
optomechanical systems [1]. Moreover, creating nonclass-
ical states in macroscopic mechanical systems is appealing
for fundamental studies of quantum physics [2,3]. In these
contexts, establishing an efficient and controllable inter-
action between phonons and QEs would be highly ben-
eficial as it would enable using the QE nonlinearity for the
creation and manipulation of phononic quantum states [4].

Different approaches have been proposed to realize such
an interaction. First, a phonon can directly couple to a solid-
state QE through mechanical strain [5-8]. Large coupling
rates can be obtained in specific systems, but this effect
is difficult to engineer and to dynamically control. A second
approach couples mechanical modes dispersively to an
optical cavity, which, in turn, interacts with a QE [9-12].
Tripartite entanglement and atom-assisted optomechanical
cooling are predicted in the so-far-elusive regimes when the
optomechanical interaction is nonlinear at the quantum level
[9] or when the emitter-field coupling rate approaches the
emitter frequency [11]. Additionally, a QE-phonon inter-
action occurs in molecules and solids when the electronic and
vibrational degrees of freedom are coupled, leading to
inelastic scattering processes. Natural Raman transitions
have been used to transfer a photon’s quantum state to an
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optical phonon in diamond [13,14], but the extremely high
frequency and large dissipation limit general applications
for quantum processing.

In this Letter, we propose a novel optomechanical
effect that provides an explicit, engineerable, and optically
controllable interaction between a QE and a macroscopic
mechanical oscillator. The interaction arises from a
mechanically induced modification of the spatial distribu-
tion of the optical field [Fig. 1(a)], which, in turn,
modulates the QE-photon coupling rate. We show that
this interaction is particularly strong in systems of weakly
interacting optical cavities because the field variation, upon
a perturbation, scales inversely with the frequency spacing
between optical modes. In such systems, the combined
effect of different bipartite interactions gives rise to a novel
QE-photon-phonon coupling that we term mode field
coupling (MFC). We show that MFC can become the only
allowed interaction, enabling, e.g., QE-phonon excitation
swapping and mechanical ground-state cooling in the bad-
cavity regime. Importantly, the interaction can be con-
trolled and enhanced by the optical field intensity, resulting
in optically controlled emitter-phonon coherent manipula-
tion. This coupling, and the resulting Hamiltonian, share
important traits with Raman-like processes in trapped ions
[15], which have proven powerful in controlling the
motional state of single ions. MFC has, however, two
distinct features: it involves large-mass macroscopic reso-
nators, and its rate is nonetheless large enough to overcome
the large decoherence typical of solid-state QEs.

Model.—We consider a standard CQED setup, in which
a two-level QE couples to an optical cavity mode through
the Hamiltonian A = w,6./2 + w.a'a + g(as, + a's_),
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FIG. 1. (a) Sketch of the proposed concept. An optical cavity

(yellow solid line) defines an electric field (red pattern), which is
initially (left) zero at the QE position (green symbol). Upon
boundary displacement (right), the field seen by the QE becomes
nonzero and radiative transitions can occur. (b) Phonon-
nonconserving transitions achievable through MFC. A photon
red detuned (blue detuned) by ,, with respect to the QE
stimulates transitions from |g,m) to |e,m—1) (le,m + 1)).
(c) Time evolution dictated by the Hamiltonian in Eq. (1), with
the QE initially excited and @, = @, — Q.

where w, (w,) denotes the QE (optical) frequency, a is
the photon annihilation operator, 6. , are Pauli operators
describing the QE, and 7 = 1. We initially neglect any loss,
focusing on conservative interactions. The QE-photon
coupling rate g = —d - &, is determined by the emitter’s
transition dipole moment d and the electric field per photon
&y of the optical mode at the emitter position. Next, we
consider a mechanical oscillator with frequency €,
and phonon annihilation operator b. In a standard disper-
sively coupled optomechanical system, the resonator’s
displacement X = prf(l; + lA)*) affects the cavity frequency.
This interaction is quantified by the coupling rate g, =
— (0w, /0x)x,p¢, Where X, is the zero-point motion ampli-
tude. Here, we consider a fundamentally different situation
in which the mechanical displacement induces a variation
of the spatial distribution of the cavity field [Fig. 1(a)],
while w, is negligibly affected. As a direct consequence,
the emitter-cavity coupling rate g becomes dependent on
the mechanical position. Up to first order in %, g(&) =
g(0) 4+ y(b+ b"), where we defined the MFC coupling
rate y = (Jg/0x)|,—oX,p- Inserting this expression in the
Hamiltonian leads to the appearance of a tripartite inter-
action between the QE, optical field, and mechanical
resonator. In the specific case that at mechanical equilib-
rium the field at the emitter’s position vanishes [Fig. 1(a)],
¢(0) =0, and the only possible interaction channel is the
tripartite one. The interaction Hamiltonian reads

Hy = y(b+b") (a6, + &'o.). (1)
This Hamiltonian allows swapping the excitation between
the three quantum systems under particular resonant con-
ditions. For o, ~ w, + Qy (0, ~ w4 — ), the dominant
term is b'6,a + H.c. (b6,.a + H.c.), describing phonon

and QE excitation upon photon annihilation (QE excitation
due to photon and phonon annihilation) and the reverse
process. Depending on the photon energy, therefore, the
transitions |g, m) <> |e,m £+ 1) are realized [Fig. 1(b)],
where e (g) denotes the QE excited (ground) state and
m the phonon number. Figure 1(c) shows the lossless time
evolution described by Eq. (1) for . = wy — Qy, with
only the QE initially excited. The excitation oscillates at a
frequency 2y between the QE and the state formed by one
photon and one phonon. Next, we consider pumping the
cavity with a large coherent field to an average photon
number n,,, writing the cavity field as a = |/ng, + da.
Neglecting for now the fluctuations §a (valid for ng,, > 1),
the Hamiltonian reads

Hi, = 7V ncav(b + bT)(&Jr + 0-—)’ (2)
which describes a coherent QE-phonon interaction, with a
coupling rate controlled by n,,. Thus, the optical intensity
can enhance the QE-phonon coupling and, in particular,
overcome system losses.

Creating large field variations.—We will now show that
the effective MFC interaction Hamiltonian [Eq. (1)] can
emerge from standard radiation-pressure forces in coupled-
cavity systems. As the mode field is the solution of an
eigenvalue problem [16], we look for a mechanical per-
turbation that induces strong changes of the eigenvector
without affecting the eigenvalue. This is maximized for
quasidegenerate unperturbed eigenvalues, which can be
obtained by coupling multiple cavities such that hybridized
modes (“supermodes”) with well-defined symmetry are
formed. Near a symmetry point, i.e., an anticrossing, an odd
perturbation breaks symmetry. This localizes the superm-
odes in one of the cavities, resulting in a large variation of
the local mode field.

Indeed, we find an example of MFC [Fig. 2(a)] in two
identical optical cavities coupled with rate J (a membrane-
in-the-middle setup [17,18]). A mechanical displacement
that induces opposite detuning +A to each cavity affects
the spatial distribution of the supermode amplitudes, and
thereby their coupling rate (¢*)) with an emitter placed in
one cavity [Fig. 2(c)]. For A/J « 1, the supermode
frequencies are constant [Fig. 2(b)]; i.e., dispersive cou-
pling is absent. Importantly, the MFC coupling rate y is
enhanced for weak intercavity coupling as it scales with J~!
(see Supplemental Material [19]): for weakly interacting
cavities (J — 0), small deviations from the condition
A = 0 quickly lead to localization of the supermodes into
the individual cavities. In the two-cavity system, however,
the tripartite MFC interaction competes with the Rabi
emitter-photon interaction as g*) (0) # 0 [Fig. 2(c)].

This direct QE-photon interaction can be suppressed by
introducing an additional optical cavity with identical
frequency [Fig. 2(d)]. The middle cavity (T), containing
the QE, interacts with both lateral cavities with rate J,
leading to the formation of three supermodes &, , a_, and a,
[26,27]. For zero detuning, the mode &, has opposite fields
in the lateral cavities and zero field in 7T [blue line in
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FIG. 2.

(a) Two identical cavities interact at rate J through a partly transparent movable mirror. The symmetric optical supermode is

sketched for zero detuning (red line) and equal and opposite detuning A on the cavities (black dashed line). (b) Supermode frequencies
versus A/J. (c) Coupling rates between a QE located in the left cavity (L) and the two supermodes (normalized to the coupling rate g

with the uncoupled mode in L) versus A/J. (d) Three-cavity system.

The field of the supermode of interest (&) is shown as a blue (black

dashed) line for zero (+A) detuning of the lateral cavities. (¢) Supermode frequencies in the three-cavity system. (f) Normalized
coupling rate between a QE located in cavity T and the supermode a,. (g)—(i) Implementation based on three defect cavities in a
photonic crystal nanobeam. Vertical dashed lines mark cavity positions. (g) Electric field (y component) of &, at mechanical equilibrium.
(h) Displacement pattern of the selected mechanical mode. (i) Expected field of a, upon mechanically induced perturbation

(A/J = 0.5). Additional details in [19].

Fig. 2(d)], and therefore, does not interact with the QE. We
now consider a mechanical mode that detunes only the
frequencies of the lateral cavities by +A, while leaving T
unperturbed. This could be realized for example by rigidly
connecting the two membranes. More generally, it can be
obtained by dispersively coupling each optical cavity at a
rate g to a separate mechanical oscillator [19]. If these three
identical oscillators are coupled mechanically, one resulting
mechanical supermode has equal and opposite dispersive
interaction with the lateral cavities with a rate 4-¢,/+/2 and
zero interaction with 7. The frequency of & is unaltered by
such detuning [Fig. 2(e)], while its field in 7 becomes finite
[Fig. 2(d), dashed line], which translates in a large modu-
lation of the coupling rate () between &, and the QE around
the value g<0) =0 [Fig. 2(f)]. Therefore, the interaction
between the emitter, the mode a, and the selected mechani-
cal mode will be described by the Hamiltonian in Eq. (1).

Figures 2(g)-2(h) show an implementation of this model
in a photonic crystal nanobeam. Cavities are defined by
local periodicity variations, which yield colocalized and
dispersively coupled optical and mechanical resonances
[28,29]. Placing three defect cavities along one nanobeam
leads to both optical and mechanical hybridization. The
intercavity separation controls the optical interaction rate J.
The electric field of a, [Fig. 2(g)] is zero in the central
cavity when the mechanical mode is at rest. Figure 2(h)

shows the mechanical mode that provides the required
detuning on the lateral cavities, which causes a, to acquire
a finite electric field in the central cavity [Fig. 2(1)].

Full model and numerical calculations.—We now ana-
lyze the three-cavity system in detail and show that it
behaves as predicted by Eq. (1). For simplicity, we consider
only one of the hybridized mechanical supermodes,
described by the operator b, frequency €,,, and disper-

sively coupled to the lateral cavities at a rate +¢,/+/2. This
approach is justified as long as the mechanical mode
coupling exceeds the mechanical dissipation [19]. In a
frame rotating at w,, the Hamiltonian is

A

o

i = —Adla, + Aahag + Qub'h + 24~ 2 > e

+ J]ay(a, + ag) + He] + g(agé, +He.), (3)
where we defined A = go/v/2(b + b"). The first two terms
describe the mechanically induced detuning on the lateral
cavities. The second row describes optical mode coupling
and the Rabi interaction between emitter and cavity 7. For
J> Q,,, we can treat A quasistatically [18] and diago-
nalize the optical part of the Hamiltonian by introducing
three optical supermodes, a4 and a,. Up to the first order in
A /J (generally applicable until very large phonon numbers
[19]), we obtain an effective interaction Hamiltonian
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Hyp = y(b+b")(aps,. +Hc) + ¢[(a, —a_)6,. +Hel.
(4)

The first term of Eq. (4) shows the tripartite interaction
explicitly, with y = ggo/2J. The last term describes a Rabi
interaction between the emitter and the supermodes a.., with
coupling rate ¢’ = g/+/2. A pure tripartite interaction can
therefore be obtained for significant supermode separation
(J> Q) and tripartite resonance (wy ~ @, * Q).
Additionally, to let the emitter interact with the supermodes
(and not the uncoupled modes), we require J > g. To verify
that the predicted coherent emitter-phonon interaction occurs
in arealistic scenario, we numerically calculate the dynamics
dictated by the full Hamiltonian in Eq. (3) [19,30]. Out of
the many possible systems, we consider the structure of
Figs. 2(g)-2(h) made in diamond with a nitrogen vacancy
(NV) center as an emitter. The simulated parameters for
this system are {w.,Qy, g, g0} = 22{4.7 x 10°, 14,20,
0.004} GHz. We consider wy = @, + Q,; and J = 18g,
corresponding to single-period cavity separation [19].
The lossless evolution of the three-cavity system {shown
in Fig. S(3)a of [19]} agrees perfectly with that of the
MFC Hamiltonian [Fig. 1(c)] and verifies the predicted QE-
phonon oscillation period z/y = 4.5 ps. This confirms that
for realistic choices of parameters, a purely tripartite inter-
action is obtained in the three-cavity system. In order to
overcome losses, unavoidable in an experimental setting,
the coupling rate can be enhanced by selectively pumping the
supermode a, [19]. Figure 3(a) shows the evolution of the
three-cavity system [Eq. (3)], with dissipations introduced
through Lindblad operators [19], using cavity decay rate
k/2n = 3 GHz and emitter decay rate I'/2z = 0.05 GHz
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FIG. 3. Numerical calculations based on the three-cavity

Hamiltonian [Eq. (3), parameters in text]. (a) The QE is excited
at T = 1 ns and subsequently the mode d, (red shaded area) is
strongly pumped. (b) Fidelity of the created one-phonon state
versus I" and « for n,, = 5 x 10*. The vertical dashed-dotted line
indicates k = 2goJ\/fiay/g. (¢) Two examples of nonclassical
mechanical states obtainable. Top plots: pumping sequences.
Bottom plots: resultant Wigner maps of the mechanical resonator.
(d) Cooling through MFC. Steady-state mean phonon number
versus I and n,, for continuous optical pumping and k = 10€2,.

(measured for NV centers in photonic crystals [20]). The QE is
excited by a short 7 pulse, followed by a pulse that excites a
to a maximum population of n., = 5 x 10*, shown to be
experimentally feasible in diamond [29]. We note that the
emitter is not directly affected by the large optical intensity as
the field is zero at its position. During the optical pulse, the
mechanical mode interacts with the QE with a coupling rate
V\/Tcav- After atime At = 7/2y . /ng,,, the pump is switched
off, suppressing the interaction and leaving the system in a
one-phonon state with a fidelity of 0.86. Its nonclassical nature
is emphasized by the characteristic negativity of the Wigner
function (shown in Fig. S(3)b of [19]). The fidelity of the one-
phonon state creation can be made arbitrarily close to one
[Fig. 3(b)] by reducing the QE decay rate (so that
[' < yy/ney) and the optical losses « of the supermodes
a,., which introduce additional decay for the QE due to the
finite optical linewidth. This decay is negligible when x <«
2g0J \/Neay/ g [dashed-dotted line in Fig. 3(b)] [19]. The
influence of n,, and QE dephasing on the fidelity is discussed
in the Supplemental Material [19].

The optical control of the QE-phonon interaction allows
creating also other nonclassical mechanical states by
pumping the QE and the optical mode with properly
controlled pulse sequences. As an example, we demon-
strate the preparation of a Fock state |¥) =|2) and a
superposition state |¥) = (|0) — |2))/+/2 using the same
parameters as Fig. 3(a). The QE is excited twice, each time
followed by either a - or a z/2-pulse on the optical mode.
Figure 3(c) shows the resultant Wigner maps, displaying
the expected nonclassical signatures for these states, which
are prepared with fidelities 0.79 and 0.87, respectively.
Interestingly, this interaction could also be employed to
reconstruct the density matrix of mechanical states with
methods analogous to trapped-ion experiments [15].
Alternative methods to characterize the produced states
involve tomography using the dispersive interaction of the
mechanical supermode with a different cavity mode [1].

The proposed QE-phonon interaction can also be used to
cool the mechanical resonator to its ground state. The cooling
cycle is triggered by a red-detuned cavity photon, which
excites the QE upon annihilation of a phonon. The excitation
is subsequently dissipated through the QE decay. Differently
from standard optomechanical cooling [1], this mechanism
can achieve ground-state cooling in the bad cavity regime
(k > Q),), while resolved sideband operation is required
only forthe QE (I' < Q). Figure 3(d) shows the steady-state
phonon population in the three-cavity system versus I’
and ng,, for k = 108, finite mechanical losses (I'y; /27 =
50 kHz), and thermal initial phonon occupation ny, = 4. As
expected, ground-state cooling is possible for I'/Q,, < 1.
Phonon population lower than 0.1 can be achieved
with n,, < 10 and realistic QE decay rates. The phonon
population increase for large n,, is attributed to the onset
of ultrastrong coupling, as y,/n.,, approaches €2),. For
small T, the QE total decay rate is dominated by the
additional emission into the supermodes a, (which read
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' = g?k/4J% ~ 27 x 0.11 GHz [19]), which explains the
saturation of the phonon population for I'/Q,, < 1072,

In conclusion, we have introduced a new kind of emitter-
photon-phonon interaction in hybrid-optomechanical sys-
tems, based on mechanically induced variations of the electric
field spatial pattern. The interaction is particularly strong in
weakly interacting multicavity systems as it scales inversely
with the intercavity coupling rate J. For large optical drives,
this mechanism leads to an emitter-phonon coherent inter-
action whose strength is controlled by the optical intensity.
Emitter-phonon excitation swapping and mechanical ground-
state cooling are possible with feasible experimental param-
eters. The proposed interaction strength is much larger than
effects obtainable in single-mode systems, which require the
ultrastrong coupling regime (g~ w,) to have comparable
rates [10-12,19]. Differently from strain-based methods
[5-8], the proposed mechanism is not limited to a specific
choice of emitters and material systems, and it could even be
applied to atoms trapped near a mechanical resonator
[31-33]. Moreover, it provides strong quantum nonlinearities
without requiring the single-photon strong optomechanical
coupling regime (gy > k). In perspective, the proposed
optically controlled emitter-phonon interaction paves the
way for, e.g., control of spontaneous phonon emission,
creation of nonclassical states of motion, and phonon lasing.
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optomechanical cavities. This work is part of the research
programme of the Netherlands Organisation for Scientific
Research (NWO). E. V. acknowledges an NWO-Vidi grant
for financial support.
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