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I. DENSITY MATRIX CALCULATIONS, NUMERICAL SETUP

The non-Hermitian evolution of the different systems considered in this work has been
calculated with a Master equation approach, in which the different dissipative channels are
described by proper Lindblad terms. For a given Hamiltonian Ĥ, we calculate the temporal
evolution of the density matrix ρ through the equation

˙̂ρ = − i
~

[
Ĥ, ρ̂

]
+
∑
i

κi
2

(
2âiρ̂â

†
i −
{
â†i âi, ρ̂

})
+

ΓM(nth + 1)

2

(
2b̂ρ̂b̂† −

{
b̂†b̂, ρ̂

})
+

+
ΓMnth

2

(
2b̂†ρ̂b̂−

{
b̂b̂†, ρ̂

})
+

Γ

2
(2σ̂−ρ̂σ̂+ − {σ̂+σ−, ρ̂}) +

Γ∗

2
(σ̂zρ̂σ̂z − ρ̂)

(S1)

where the sum refers to all the optical cavities considered, κi is decay rate of the i-th
cavity, ΓM is the decay rate of the mechanical mode, nth is the average phonon number
of the external bath, and Γ and Γ∗ are the decay rate and pure dephasing rate of the
emitter, respectively. The brackets [,] and {,} indicate commutation and anti-commutation
of the operators, respectively. The master equation has been solved numerically with the
opensource Python framework QuTIP [1]. For the numerical calculations, the dimensions
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of the Fock spaces of the optical cavities and mechanical resonator need to be truncated.
For the calculations of the emitter-phonon swapping, the Fock spaces of the mechanical
oscillator and optical cavities all have dimensions of 2. We verified that no appreciable
numerical differences arise for larger Fock spaces dimensions. For the cooling calculations,
the Fock space of the mechanical resonator has a dimension of 15, to ensure that a thermal
state with nth = 4 can be properly described.

Both in the in main text and in this SI we frequently use the concept of fidelity to quantify
the closeness of a created state and a target one. The fidelity is defined as F(ρ̂A, ρ̂B) ≡
tr
(√

(ρ̂A)1/2ρ̂B(ρ̂A)1/2
)

[2], where ρ̂A and ρ̂B are the density matrices of the states to be

compared and “tr” denotes the trace.

II. DERIVATION OF THE MODE FIELD COUPLING FOR THE

TWO-CAVITY SYSTEM

The general model describing mode field coupling in a two-cavity system is schematically
depicted in fig. S1. We consider two identical optomechanical systems, denoted left (L) and
right (R), each composed of an optical cavity with frequency ωc and a mechanical resonator
with frequency ΩM. In each system, the cavity and the resonator are dispersively coupled at
a rate g0. We describe the fields in the two optical cavities with the annihilation operators âL

and âR, and the two mechanical resonators with annihilation operators b̂L and b̂R. The two
optical cavities are coupled with a rate J , while the two mechanical resonators are coupled
with a rate JM. Finally, a two-level emitter is placed in the left cavity, and interacts with
the field âL with a coupling rate g.

FIG. S1. Schematic of the two-cavity system. Two identical optical cavities (each denoted by a

couple of red mirrors) interact with each other at a rate J . Each cavity is dispersively coupled

to a separate mechanical resonator with an optomechanical coupling rate g0. The resonators are

identical and have frequency ΩM. The two mechanical resonators are additionally coupled to each

other at a rate JM. An emitter is placed in the left optical cavity and interacts with one of its

optical modes with a coupling rate g.
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The full Hamiltonian reads

Ĥ =
[
ωc − g0

(
b̂†L + b̂L

)]
â†LâL +

[
ωc − g0

(
b̂†R + b̂R

)]
â†RâR + ΩM

(
b̂†Lb̂L + b̂†Rb̂R

)
+
ωA

2
σ̂z+

+ J
(
â†RâL + h.c.

)
+ JM

(
b̂†Rb̂L + h.c.

)
+ g (σ̂+âL + h.c.) .

(S2)

We now introduce mechanical supermodes b̂± = 1√
2

(
b̂L ± b̂R

)
. Substituting these in the

Hamiltonian, we obtain

Ĥ =

[
ωc −

g0√
2

(x̂+ + x̂−)

]
â†LâL +

[
ωc −

g0√
2

(x̂+ − x̂−)

]
â†RâR+

+ (ΩM + JM) b̂†+b̂+ + (ΩM − JM) b̂†−b̂− +
ωA

2
σ̂z+

+ J
(
â†RâL + h.c.

)
+ g (σ̂+âL + h.c.) ,

(S3)

where we have defined the dimensionless position operators of the mechanical supermodes
x̂± = b̂†±+ b̂±. The mechanical mode b̂− interacts dispersively with the modes âR and âL with

equal and opposite coupling rate±g0/
√

2. In the following, we will neglect the presence of the

other mechanical supermode, b̂+. For simplicity, we replace b̂− → b̂ and (ΩM − JM)→ ΩM.

We moreover define the operator ∆̂ =
g0√

2

(
b̂† + b̂

)
. The new Hamiltonian reads

Ĥ =− ∆̂â†LâL + ∆̂â†RâR + ΩMb̂
†b̂+

ωA − ωc

2
σ̂z+

+ J
(
â†RâL + h.c.

)
+ g (σ̂+âL + h.c.) ,

(S4)

where we also performed a unitary transformation Ĥ → Û(t)ĤÛ †(t) − iÛ(t)
∂Û(t)†

∂t
, with

Û(t) = exp
[
−iωct

(
â†LâL + +â†RâR + σ̂+σ̂−

)]
. Assuming a quasi-static approximation for

∆̂, valid in the limit J � ΩM, we can diagonalize the optical part of the Hamiltonian [3].
The optical supermodes are defined by

â+ = αâL + βâR, â− = βâL − αâR, (S5)

where α and β are operators defined by

α =

√
∆̂2 + J2 + ∆̂√(√

∆̂2 + J2 + ∆̂
)2

+ J2

, β =
J√(√

∆̂2 + J2 + ∆̂
)2

+ J2

. (S6)

In the supermode basis, the Hamiltonian is

Ĥ =

√
J2 + ∆̂2 â†+â+ −

√
J2 + ∆̂2 â†−â− +

ωA − ωc

2
σ̂z + ΩMb̂

†b̂+

+ gα (σ̂+â+ + h.c.) + gβ (σ̂+â− + h.c.) .
(S7)
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Up to the first order in ∆̂/J , the coefficients α and β read

α =
1√
2

(
1 +

∆̂

2J

)
+O

(
∆̂

J

)2

, β =
1√
2

(
1− ∆̂

2J

)
+O

(
∆̂

J

)2

. (S8)

By inserting these expansions in the Hamiltonian in eq. S7, and expressing again ∆̂ as a
function of b̂ and b̂†, we get

Ĥ =

√
J2 + ∆̂2 â†+â+ −

√
J2 + ∆̂2 â†−â− +

ωA − ωc

2
σ̂z + ΩMb̂

†b̂+

+
g√
2

(σ̂+â+ + h.c.) +
g√
2

(σ̂+â− + h.c.) +

+
gg0

4J

(
b̂† + b̂

)
(σ̂+â+ + h.c.)− gg0

4J

(
b̂† + b̂

)
(σ̂+â− + h.c.) .

(S9)

The second row describes the Rabi interaction of the emitter with the two optical super-
modes, with a coupling rate g/

√
2. As mentioned in the main text, in the two-cavity system

this interaction is unavoidable and is due to the fact that both optical supermodes have
nonzero field in both cavities for all finite detunings. The third row describes the tripartite
interaction between the emitter, the phonon and the optical supermodes.

III. DERIVATION OF THE MODE FIELD COUPLING FOR THE

THREE-CAVITY SYSTEM

The model for the three-cavity case is schematically depicted in fig. S2. The three
identical optical cavities, denoted left (L), target (T) and right (R) are dispersively coupled
at a rate g0 with a separate mechanical resonator, in similar fasion as in the previous section.
The three mechanical resonators are assumed identical and with frequency ΩM. We describe
the three optical cavities with the annihilation operators âL, âT and âR, and the three
resonators with annihilation operators b̂L, b̂T and b̂R. The optical cavity T is coupled to the
cavities L and R with a rate J , while the mechanical resonator b̂T is coupled with a rate JM

to the resonators b̂R and b̂L. Finally, a two-level emitter is placed in the target cavity, and
interacts with the field âT with a coupling rate g.

The full Hamiltonian reads

Ĥ =
[
ωc − g0

(
b̂†L + b̂L

)]
â†LâL +

[
ωc − g0

(
b̂†T + b̂T

)]
â†TâT +

[
ωc − g0

(
b̂†R + b̂R

)]
â†RâR+

+ ΩM

(
b̂†Lb̂L + b̂†Tb̂T + b̂†Rb̂R

)
+
ωA

2
σ̂z+

+ J
[
â†T (âR + âL) + h.c.

]
+ JM

[
b̂†T

(
b̂R + b̂L

)
+ h.c.

]
+ g (σ̂+âT + h.c.) .

(S10)

The mechanical part of this Hamiltonian can be diagonalized by introducing the modes

b̂0 =
1√
2

(
b̂L − b̂R

)
,

b̂+ =
1√
2
b̂T +

1

2

(
b̂R + b̂L

)
,

b̂− = − 1√
2
b̂T +

1

2

(
b̂R + b̂L

)
.

(S11)
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FIG. S2. Schematic of the three-cavity system. Three identical optical cavities (each denoted by a

couple of blue mirrors) are arranged such that the central one interacts with the two lateral ones

with a rate J . Each cavity is dispersively coupled to a separate resonator with an optomechanical

coupling rate g0. The resonators are identical and have frequency ΩM. The central mechanical

resonator is additionally coupled to the other two mechanical resonators with a rate JM. An emitter

is placed in the central optical cavity and interacts with its optical mode with a coupling rate g.

The transformed Hamiltonian reads

Ĥ =ωc

(
â†LâL + â†TâT + â†RâR

)
+ ΩMb̂

†
0b̂0 +

(
ΩM +

√
2JM

)
b̂†+b̂+ +

(
ΩM −

√
2JM

)
b̂†−b̂− +

ωA

2
σ̂z+

+
g0√

2
x̂0

(
â†RâR − â†LâL

)
+
g0

2
(x̂+ − x̂−)

(
â†LâL + â†RâR

)
− g0

2
(x̂+ − x̂−) â†TâT+

+ J
[
â†T (âR + âL) + h.c.

]
+ g (σ̂+âT + h.c.) ,

(S12)

where we have defined the dimensionless position operators of the mechanical supermodes
x̂± = b̂†± + b̂± and x̂0 = b̂†0 + b̂0. We now focus only on the mechanical mode b̂0 with
the assumption that, under the resonant condition ωA = ωc + ΩM, the terms involving the
other mechanical modes are negligible (this assumption is numerically verified in section

XI). For simplicity, we redefine b̂0 → b̂. Moreover, we perform a unitary transformation

Ĥ → Û(t)ĤÛ †(t) − iÛ(t)
∂Û(t)†

∂t
, with Û(t) = exp

[
−iωct

(
â†LâL + â†TâT + â†RâR + σ̂+σ̂−

)]
.

The new Hamiltonian reads

Ĥ =− ∆̂â†LâL + ∆̂â†RâR + ΩMb̂
†b̂+ +

ωA − ωc

2
σ̂z+

+ J
[
â†T (âR + âL) + h.c.

]
+ g (σ̂+âT + h.c.) ,

(S13)

where we defined ∆̂ = g0x̂0/
√

2. We note that the selected mechanical mode has equal and
opposite dispersive coupling with the optical cavities L and R, at a rate ±g0/

√
2, while it

does not affect the optical cavity T. We again assume a quasi-static approximation for ∆̂,
valid in the limit J � ΩM, to diagonalize the optical part of the Hamiltonian [3]. The three
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optical supermodes are defined in this case by

â0 = −εâL + βâT + εâR,

â+ = ηâL − εâT + µâR,

â− = µâL + εâT + ηâR,

(S14)

where ε, β, µ and η are operators. In particular,

ε =
1√

2 +
(

∆̂/J
)2
, β =

∆̂/J√
2 +

(
∆̂/J

)2
. (S15)

The functions η and µ satisfy η(∆̂, J) = µ(−∆̂, J). Their expressions are more complicated
and not reported here, as they are not needed in the following. The Hamiltonian in the
supermode basis reads

Ĥ =

√
2J2 + ∆̂2

(
â†+â+ − â†−â−

)
+ ΩMb̂

†b̂+ +
ωA − ωc

2
σ̂z+

+ gβ (σ̂+â0 + h.c.) + gε [σ̂+ (â+ − â−) + h.c.] .
(S16)

Up to the first order in ∆̂/J , the functions β and ε are

β =
1√
2

∆̂

J
+O

(
∆̂

J

)3

, ε =
1√
2

+O

(
∆̂

J

)2

. (S17)

By inserting these expansions in the Hamiltonian in eq. S16, and expressing again ∆̂ as a
function of b̂ and b̂†, we get

Ĥ =

√
2J2 + ∆̂2

(
â†+â+ − â†−â−

)
+ ΩMb̂

†b̂+ +
ωA − ωc

2
σ̂z+

+
gg0

2J

(
b̂† + b̂

)
(σ̂+â0 + h.c.) +

g√
2

[σ̂+ (â+ − â−) + h.c.] .
(S18)

The first term of the second row describes the mode field coupling between the emitter, the

phonon and the mode â0, with a coupling rate γ =
gg0

2J
. The second term of the second

row describes a Rabi interaction between the emitter and the other two optical supermodes.
As confirmed by the numerical simulations based on the full Hamiltonian in eq. S13 (see
main text), the effect of these terms is negligible when the spectral separation between the
supermodes is much larger than the mechanical frequency (

√
2J � ΩM). However, for finite

optical linewidths (κ), the presence of the modes â± will introduce additional decay channels
for the QE, as explained below.

To verify the validity of the effective Hamiltonian derived in eq. S18, and in particular
the presence of the predicted tripartite QE-phonon-photon interaction, we numerically cal-
culated the evolution of the system dictated by the Hamiltonian in eq. S13, i.e., without
introducing the optical supermodes. We start with the QE excited, we use the parameters
mentioned in the main text, {ωc, ΩM, g, g0, J} = 2π·{4.7·105, 14, 20, 0.004, 360} GHz, and
we set the resonant condition ωA = ωc + ΩM. As shown in fig. S3a, the lossless evolution of
the system agrees perfectly with that of the MFC Hamiltonian (fig. 1c of the main text): the
system oscillates between the state in which only the QE is excited and the state in which
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the QE is in the ground state and one photon and one phonon are present. The oscillation
period verifies the predicted value of T = π/γ = 2πJ/(gg0) = 4.5 µs. This confirms that, for
realistic choices of parameters, a purely tripartite interaction is obtained in the three-cavity
system, as predicted by the effective Hamiltonian in eq. S18.

Even in presence of losses, nonclassical states can be obtained. In the main text we have
shown how the losses can be overcome by strongly pumping the mode â0 (fig. 3a of the main
text), and the one-phonon state can be created with high fidelity, F=0.86. The Wigner map
of the mechanical state created in fig. 3a is shown in fig. S3b. The nonclassical nature of
the state is evident from the negativity of the Wigner map.

FIG. S3. (a) Lossless evolution dictated by the Hamiltonian in eq. S13, starting from an excited

QE and with a red-detuned cavity (ωA = ωc + ΩM). The parameters are {ωc, ΩM, g, g0, J} =

2π·{4.7·105, 14, 20, 0.004, 360} GHz. (b) Wigner map of the mechanical state created in fig. 3a of

the main paper.

IV. VALIDITY OF THE LINEAR APPROXIMATION IN THE DERIVATION

OF THE MODE FIELD COUPLING

In deriving the Hamiltonian of both the two-cavity and three-cavity systems we neglected
terms of second or higher order in ∆̂/J (eqs. S8 and S17). This approximation sets,
in principle, a limit on the mechanical nonclassical state which can be created via the
MFC, because for a generic state |Ψ〉 the expectation value of the operator ∆̂ may be not
negligible with respect to J . However, as we show here, this limit is extremely large. We
can consider a generic state of the mechanical resonator, |Ψ〉 =

∑∞
n=0 Cn |n〉, where the Cn

are arbitrary coefficients and |n〉 are the Fock states. Since the expectation value of the

operator ∆̂ = g0/
√

2(b̂ + b̂†) is zero in any Fock state, we instead consider the quantity√
〈∆̂2〉. Requiring that

√
〈∆̂2〉 � J leads to

∞∑
n=0

[(
C∗n+2Cn + Cn+2C

∗
n

)√
(n+ 1)(n+ 2) + |Cn|2(2n+ 1)

]
� 2J2

g2
0

. (S19)

For a Fock state (i.e., Cn = 1, Cm6=n = 0), this inequality leads to n � (J/g0)2. With
the parameters used in the main text, this translates into n � 1010, which ensures us that
the MFC allows generating nonclassical mechanical states in extremely large Fock spaces.
Essentially similar results hold if one consider a superposition of a finite number of Fock
states. A similar analysis can be carried out for a coherent state |Ψ〉 = |α〉, which leads to
the limit |α| � J/g0 ≈ 105.
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V. EMITTER DECAY RATE IN THE THREE-CAVITY SYSTEM

As mentioned in the main text, for the calculation in fig. 3b we assume a conservative
value of Γ/2π = 0.05 GHz for the rate of the emitter decay into the leaky modes (i.e., all the
optical modes different from the three supermodes of the system). This value corresponds
to the one measured for an NV center placed in a single defect cavity (similar to the one
used here to realize a three-cavity system) and out of resonance with the optical mode [4].
However, significantly smaller radiative decay rates could in principle occur in the proposed
structure, as we explain in the following. To evaluate the expected decay rate, we perform
finite element method calculations (COMSOL) of the power emitted by an electric dipole
(fig. S4) placed in either the target (blue line) or the left cavity (green line) of the structure
considered in the main text. We then normalize the calculated powers by the power emitted
by the same dipole in bulk diamond. In this way we obtain a prediction for the radiative
decay rate of a QE (with the same position and polarization of the dipole) normalized to
the radiative decay rate of the same QE in bulk. In agreement with the spatial patterns of
the optical supermodes (see also sec. XII of this S.I.), a dipole placed in the lateral cavity
can feed all the three optical supermodes, while one that is located in the target cavity does
not emit into the mode â0. In particular, the calculation shows that the radiative decay
rate of a QE placed in the cavity T is reduced by almost a factor 103 with respect to the
decay rate in bulk. As the measured lifetime of an NV center in bulk is about 12 ns [5], a
radiative decay rate of the order of Γ/2π = 0.1 MHz is in principle expected for the same
emitter placed in the target cavity. We also note that the emission of a dipole in the target
cavity is dominated by the coupling with the nonresonant coupled modes for the chosen set
of parameters (see sec. VI), while the emission into leaky modes is expected to be even
smaller. We therefore conclude that the assumed value of 50 MHz is indeed a conservative,
upper estimate of the QE decay rate.

FIG. S4. Calculated power emitted by a dipole placed in the target (blue line) and left (green line)

cavity of the three-cavity diamond structure discussed in the main text and in sec. XII of this SI.

The powers (PCav) are normalized by the power emitted in bulk diamond (PBulk).
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VI. ADDITIONAL RADIATIVE LOSSES INTRODUCED BY THE

SUPERMODES â+ AND â−

As shown in the main text, for a proper parameter choice the Hamiltonian of the three-
cavity system provides a tripartite interaction between the supermode â0, the QE and the
mechanical mode. The interaction between the QE and the modes â± is suppressed for large
supermode separation (

√
2J � ΩM). However, these optical modes are still coupled with

the emitter (since their fields at the emitter position is not zero), as shown in fig. S4. For
large optical losses κ > g, the supermodes â± are weakly coupled to the QE and therefore
they introduce additional decay channels (denoted Γ(±)). These additional decay channels
become relevant when the other radiative decay channel (Γ) is small and the optical linewidth
is significant. This effect is important in understanding some features related to the fidelity
of the created nonclassical states and to the ground-state cooling efficiency (see figs. 3(b,d)
and accompanying discussion in the main text). Γ(±) can be calculated as follows. If an
optical mode with losses κ is resonant with a QE and coupled with it at a rate g′ < κ,
the QE decays into the optical mode at a rate 4g′2/κ . In the presence of a large spectral

detuning δ � κ, the decay rate is modified into
4g′2

κ
· κ2/4

δ2 + κ2/4
≈ g′2κ

δ2
[6]. In our case,

δ =
√

2J and we replace g′ = g/
√

2, consistently with the notation in the main text where
g is the coupling between the QE and the uncoupled cavity. Therefore,

Γ(±) =
g2κ

4J2
. (S20)

With respect to the QE-phonon swapping this additional decay channel is negligible when
Γ(±) � γ

√
ncav ⇒ κ � 2Jg0

√
ncav/g, which corresponds to the vertical dashed-dotted line

in fig. 3c of the main text.

VII. SELECTIVE PUMPING OF THE OPTICAL MODE OF INTEREST IN

THE THREE-CAVITY SYSTEM

In the three-cavity system the mode field coupling is due to a particular optical supermode
(â0), which, when the system is not perturbed by the mechanical displacement, features
zero electric field in the central cavity and equal and opposite field amplitudes in the lateral
cavities (see the first of eqs. S14 for ∆ = 0). In order to enhance the mode field coupling it
is therefore necessary to selectively pump this mode, without feeding the other two optical
supermodes. This is possible by pumping the two lateral cavities at a frequency ωc with equal
field amplitude E and opposite phases: excitation of modes â± is then symmetry-forbidden.
Focusing only on the optical part of the Hamiltonian, we have

Ĥopt = J
[
â†T (âR + âL) + h.c.

]
+ E

(
â†R − â

†
L + h.c.

)
, (S21)

where we switched to a frame rotating at frequency ωc. By writing the equations of motion
for the three cavity field amplitudes, and assuming equal cavity losses κ, we can calculate
the steady state population under this pumping scheme, namely āR = −āL = 2E/κ and
āT = 0. By comparing these results with eqs. S14 for ∆ = 0, we see that only the mode â0

is fed, while the population of the other two modes remains strictly zero. Interestingly, in
the limit of validity of the coupled mode theory, this result (i.e. the zero population of the
supermodes â+ and â−) is independent of κ.
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VIII. THREE-CAVITY SYSTEM HAMILTONIAN AT LARGE DRIVING

In the previous section we explained how the mode â0 can be selectively pumped. How-
ever, solving a full quantum model (eq. S13) with a large pumping of the optical cavities is
computationally extremely challenging, because of the large Fock space dimensions required.
We therefore solve a transformed version of the Hamiltonian in eq. S13, obtained through
a displacement of the cavity operators. That is, we replace the operators by the sum of a
steady-state amplitude and a fluctuating operator, i.e. âi = āi + δâi, where i = L,R,T. The
transformed Hamiltonian reads

Ĥlin =− ∆̂δâ†LδâL + ∆̂δâ†RδâR + ΩMb̂
†b̂+

ωA − ωc

2
σ̂z + J

(
δâ†T δâL + h.c.+ δâ†T δâR + h.c.

)
+

+ g (δâTσ̂+ + h.c.) +
g0√

2

√
ncav

2

(
b̂† + b̂

) [(
δâ†L + δâL

)
+
(
δâ†R + δâR

)]
(S22)

where we defined
√
ncav =

√
2|āR| =

√
2|āL| and we have used the fact that, with the

pumping scheme described in the previous section, āR = −āL and āT = 0. We note that
this Hamiltonian is still equivalent to the original one, since no terms have been neglected.
The Hamiltonian has been solved numerically (with the method discussed in sec. I) by
either setting ncav = 0 (for the case in which the mode â0 is not externally pumped) or
setting a fixed value of ncav (continuous optical pumping of the system). To address the case
of a square-pulse excitation, we first calculate the time evolution of the (classical) cavity
fields amplitudes upon the external pumping described above, neglecting the presence of
the QE and the mechanical mode. From the amplitudes āR(t) and āL(t), we calculate the
population of the mode â0 (ncav(t)), which is used as a time-dependent parameter in solving
the Hamiltonian in eq. S22.

IX. INFLUENCE OF CAVITY POPULATION AND DEPHASING ON THE

FIDELITY OF THE ONE-PHONON STATE CREATION

FIG. S5. (a) Fidelity of the creation of the one-phonon state versus the emitter decay rate Γ and

the population of the mode â0 (ncav). The dashed black line indicates the condition Γ/γ =
√
ncav.

(b) Fidelity of the creation of the one-phonon state versus the emitter decay rate Γ and the emitter

pure dephasing rate Γ∗.

As mentioned in the main text, the mode field coupling rate can be enhanced by increasing
the population of the mode â0. This is beneficial for, e.g., the fidelity of the emitter-phonon
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swapping. The colormap in fig. S5a shows the fidelity of the creation of the one-phonon state
(calculated with the transformed Hamiltonian of the three-cavity system, eq. S22) versus
the emitter decay rate Γ and the population of the mode â0. All the other parameters are
the same as in the main text. As expected, near-unity fidelity is obtained when γ

√
ncav > Γ.

Due to the coherent nature of the MFC, pure dephasing of the QE is expected to further
decrease the fidelity. As shown in fig. S5b, the QE decay Γ and pure dephasing rates Γ∗ play
a similar role in determining the fidelity, and Γ∗ � γ

√
ncav is required as well to achieve

large fidelity. We note that for the system considered for the calculations shown in this
work (NV centers in diamond), the pure dephasing rate is typically of the same order of
magnitude of the decay rate in bulk [7].

X. CREATION OF OTHER NONCLASSICAL MECHANICAL STATES

The MFC creates an interaction between a QE and a mechanical resonator whose coupling
rate is controllable in time by the optical intensity. This unique characteristic allows us to
create, in principle, any nonclassical state of the mechanical resonator, and the fidelity is only
limited by the QE and optical losses. In general, as demonstrated by Law and Eberly [8], in
any Jaynes-Cumming-like system in which the interaction between a quantum emitter and a
bosonic field (i.e., the mechanics in this case) can be controlled in time, arbitrary quantum
states of the bosonic field can be created. This is achieved by a sequence of pulses in which
the QE is first partially excited from the outside, and then the excitation is transferred to
the bosononic field by switching on the coupling [8].

In practice, simple nonclassical states such as larger Fock states or a superposition of
Fock states can be easily realized by a sequence of few π- and/or π/2-pulses applied to the
QE and the cavity, as shown in fig. 3c of the main text. Here, we first explain the creation
of these states within a simplified model in which the MFC is added ad-hoc to a system
composed of one cavity, one mechanical resonator and a QE (eqs. 1-2 of the main text).
Then, we show how the same dynamics, apart for the additional losses due to the other two
optical modes, is obtainable with the three-cavity system. We used the same parameters as
in the main text, {ωc, ΩM, g, g0, J} = 2π·{4.7·105, 14, 20, 0.004, 360} GHz, and we consider
the case of red-detuned cavity, ωA = ωc + ΩM. The cavity losses are set to κ/(2π) = 3 GHz.
For simplicity, we neglect mechanical losses. The maximum photon population in the cavity
mode upon external pumping is n̄cav = 5 · 104.

X.1. One-cavity model with MFC

We consider the simple Hamiltonian of eq. 2 (in which we already performed the lin-
earisation of the optical field). Moreover, we add an external pumping to the atom, we
consider only the dominant terms of the tripartite interaction (see discussion in the main
text after eq. 1) and we switch to a reference frame rotating at frequency ΩM = ωA − ωc.
The Hamiltonian reads

Ĥ = γ
√
ncav(t)(b̂σ̂+ + b̂†σ̂−) + EA(t) (σ̂+ + σ̂−) , (S23)

where EA(t) is a time-dependent external field resonant with the QE and ncav(t) is the
population of the optical mode. Similar to the calculations shown before, ncav(t) is calculated
as the response of the cavity mode to a sequence of square pulses. The value of γ is assumed
identical to the one obtainable in the three-cavity system with the same set of parameters,
i.e., γ = gg0/(2J) = (2π) · 0.11 MHz.
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FIG. S6. Creation of larger Fock states with the one-cavity MFC model. (a-c) Creation of the

Fock state n = 2. (a) Protocol used. Green rectangles indicate π-pulses applied to the QE, while

red rectangles are pulses applied to the cavity. (b) Time evolution in absence of QE losses (left)

and Wigner map of the mechanical state created (right). (c) Same as in (b), but with finite QE

losses Γ/(2π) = 0.05 GHz. (d-f) Same as in (a-c), for the Fock state n = 3.

Arbitrary mechanical Fock states can be obtained by first exciting the QE and then
transferring the excitation to the mechanical resonator by exciting the cavity mode with
a π-pulse, i.e., a pulse with a duration ∆t and a maximum photon population n̄cav such
that (2γ

√
m)
√
n̄cav∆t = π, where m is the phonon number to be achieved at the end of

the pulse. In fig. S6 we show the protocols to create the Fock states n = 2 (fig. S6a) and
n = 3 (fig. S6d). We calculated the system dynamics upon these pumping protocols for
both the lossless case (figs. S6b and S6e) and for the case in which the QE has finite losses
identical to the case considered in the main text, Γ/(2π) = 0.05 GHz (figs. S6c and S6f).
For each case we show the temporal evolution of the system (in terms of QE and phonon
occupation probability) and the Wigner map of the created mechanical states. The fidelity
of the created states are displayed inside the corresponding Wigner maps. For zero emitter
losses, the desired nonclassical states are created with unity fidelity, while the fidelity is
somewhat reduced when QE losses are introduced. Nonetheless, it is high enough to display
the characteristic negativity (nonclassicality) of the Wigner function.

Other nonclassical states, such as the superposition of two or more Fock states, can
be obtained by using different pulse sequences. For example, if in the case of the Fock
state n = 2 (fig. S6a) the first π-pulse on the cavity is replaced by a π/2 pulse, the state
(|g, 0〉 − |g, 2〉)/

√
2 is obtained (fig. S7a), where g refers to the ground state of the QE and

the numbers are the Fock states of the mechanics. The temporal evolution of the system and
the Wigner map of the mechanical states are shown in figs. S7b and S7c, for the lossless case
and the case with finite QE losses, respectively. Again, the only limitation to the fidelity of
the created state is due to the QE losses.
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X.2. Three-cavity model

We now verify that these nonclassical states can be obtained also in the three-cavity
system with a large optical pumping. We numerically solve the full, non-linearized, Hamil-
tonian in eq. S22 (with an additional term to externally pump the QE), in which ncav is
a time-dependent parameter which describes the optical pumping of the mode â0. In figs.

FIG. S7. Creation of the superposition state |ΨTarget〉 = (|g, 0〉 − |g, 2〉)/
√

2 with the one-cavity

MFC model. (a) Protocol used. Green rectangles indicate π-pulses applied to the QE, while red

rectangles are pulses applied to the cavity. (b) Time evolution in absence of QE losses (left) and

Wigner map of the mechanical state created (right). (c) Same as in (b), but with QE losses Γ/(2π)

= 0.05 GHz.

FIG. S8. Creation of nonclassical mechanical states with the three-cavity system. (a-b) Creation

of the Fock state n = 2 (same pumping protocols as fig. S6a). (a) Time evolution in absence

of QE losses (left) and Wigner map of the mechanical state created (right). (b) Same as in (a),

but with QE losses Γ/(2π) = 0.05 GHz. (c-d) Creation of the superposition state |ΨTarget〉 =

(|g, 0〉 − |g, 2〉)/
√

2 (same pumping protocols as fig. S7a). Panels (c) and (d) show the same plots

as in (a-b), but for the superposition state.
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S8(a-b) we show the creation of the Fock state n = 2, without (panel a) and with (panel b)
emitter losses (Γ/(2π) = 0.05 GHz). The pumping protocol used is the same as in fig. S6a.
The only difference with respect to the one-cavity system is that, even for zero QE losses,
the fidelity (0.98) is lower than one, as a result of the coupling of the QE with the other
two optical supermodes. Similar results are obtained in the creation of the superposition
state |ΨTarget〉 = (|g, 0〉 − |g, 2〉)/

√
2 (figs. S8(c-d)) that, in absence of QE losses (fig. S8c),

is created with fidelity 0.99. While reducing the cavity losses (κ) will reduce the QE decay
induced by the other two optical supermodes (Γ(±), see sec. VI), it will also increase the
temporal duration of the cavity response to the external pumping. This results in a longer
duration of the excitation transfer between the QE and the phonon, and therefore the QE
decay (Γ) will have a larger influence on the fidelity. This trade-off leads to an optimal value
of κ that maximizes the fidelity, which is numerically found to be κopt/(2π) ≈ 3 GHz in this
case.

XI. ROLE OF THE OTHER TWO MECHANICAL SUPERMODES

In the main text, and in the previous sections of this supplemental information, we
assumed that only the mechanical supermode of interest is relevant for the system dynamics.
To verify this assumption, we performed additional numerical calculations based on the
Hamiltonian in eq. S10, i.e. by considering explicitly the three mechanical uncoupled modes.

FIG. S9. Numerical calculation of the full Hamiltonian in eq. S10, i.e. considering all mechanical

modes. The parameters of the system are the same as in fig. 3a of the main text. (a-b) Vacuum

oscillations of the system (i.e. the optical cavities are not pumped). (a) The mechanical modes b̂L
and b̂R are equally populated (blue solid and blue dotted lines) and reach a maximum occupation

probability of 0.5, while the mechanical mode b̂T is not populated (cyan solid line). (b) When

switching to the supermode basis (through eqs. S11), the mode b̂0 behaves exactly as shown in

previous calculations in which the other supermodes were neglected. (c-d) Same as in panels (a-b)

but with an external pumping of the optical cavities, such that the optical supermode â0 contains

n = 5 · 104 photons.
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We use the same parameters as in the main text, and a mechanical coupling JM/(2π) = 50
MHz. Initially, we assume no mechanical losses (ΓM = 0). After calculating the time

evolution of the modes b̂L, b̂R and b̂T, we derive the time evolution of the three mechanical
supermodes based on eqs. S11. As shown in fig. S9, both in the unpumped and the pumped
case the dynamics of the mechanical mode b̂0 matches that found previously, where the other
mechanical modes were neglected. The population of the other two mechanical supermodes
(b̂+ and b̂−) is always zero (not shown in these plots). This is due to the fact that these other
mechanical supermodes interact with the optical cavities in a way which does not lead to
any tripartite interaction (see eq. S12), and their presence is therefore negligible for proper
choice of frequencies.

Interestingly, these results hold true even for large mechanical losses ΓM � JM, and the
fidelity of the one-phonon-state creation does not depend on the mechanical interaction JM,
as we show in fig. S10a. Decrease of the fidelity is only observed if the mechanical losses
become larger than γ

√
ncav. The fact that the the presence of the other two mechanical

supermodes can be completely neglected is also confirmed by fig. S10b: here, we compare
the phonon population of the mode b̂0 versus ΓM for the case of a three-cavity system (i.e.
a horizontal cut of panel a) with the same graph calculated for a system composed by one
optical cavity and one mechanical resonator, where the MFC is introduced ad-hoc (eq. 2 of
the main text). The identical behaviours indicate that a large ΓM introduces only additional
losses but does not make the system interact with the other mechanical supermodes. The
small deviation between the two curves for ΓM/(γ

√
ncav) < 1 is due to the additional losses

present in the three-cavity system due to the optical modes â±.
From a fundamental point of view, therefore, there are no constraints on the mechanical

coupling JM . Nonetheless, for practical reasons it could be beneficial to work in a regime
where JM > ΓM, such that the mode of interest is spectrally separated from the other
mechanical supermodes and it can be individually addressed in other ways for, e.g., cooling
or readout.

FIG. S10. Calculations of three-cavity system without neglecting the other mechanical supermodes.

The optical mode â0 is continuosly pumped with ncav = 5 · 104 and the QE is initially excited.

All the other parameters are the same as in the main text and the QE losses have been neglected

for simplicity. (a) Maximum phonon population (of the mode b̂0) achieved during the sysstem

evolution, versus the mechanical interaction JM and the mechanical losses ΓM. The dashed-dotted

vertical line indicates the condition ΓM = γ
√
ncav. (b) Horizontal cut of panel (a) for the lowest

value of JM (solid blue line) compared with the same quantity calculated in a MFC model with

one cavity and one resonator (green dashed line, see eq. 2 of main text).
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XII. DESIGN OF THE PROPOSED STRUCTURE

FIG. S11. Numerical investigation of the proposed structure (see text for details). (a) Electric

field pattern (top) and mechanical displacement pattern (bottom) of the colocalized optical and

mechanical mode for a single cavity. The y-component of the electric field is shown. The mode

frequencies and the optical losses are indicated in the figure. (b-c) Three identical cavities on a

nanobeam, separated by 2 periods. The position of the three cavities is marked by the vertical

grey dashed lines. (b) Electric field pattern of the three optical supermodes when the mechanical

mode is at rest. (c) Displacement pattern of the three mechanical supermodes. (d) Frequencies of

the three optical supermodes as a function of the cavities separation (i.e. number of periods). (e)

Values of the optical interaction J (extrapolated from the plot in panel (d), see text) versus the

cavity separation.

The structure proposed in the main text is composed of three in-line defect cavities in a
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photonic crystal diamond nanobeam. Simulations have been performed with a finite element
method commercial software (COMSOL). We first designed the single cavity structure (fig.
S11a), which is realized by quadratically tapering the lattice constant across 9 lattice periods,
from the unperturbed value of a = 225 nm to the central value of a′ = 0.8a = 180 nm. The
design is inspired by the one proposed recently by Lee et al.[4]. The holes have elliptical
shape, with semiaxes equal to ax = 0.32a and ay = 0.55a. The width of the nanobeam
(along the y-direction) is w = 400 nm, and the thickness is 200 nm. This structure supports
an optical mode with frequency ωc/2π = 475 THz and Q ≈ 3 ·105 (fig. S11a, top panel), and
a co-localized mechanical mode with frequency ΩM/2π = 14 GHz (fig. S11a, bottom panel).
The dispersive optomechanical coupling between the optical and mechanical modes has been
calculated by evaluating the moving-boundary and photoelastic contribution separately (as
discussed in ref. 9) and amounts to g0/2π ≈ 4 MHz. We notice that we did not perform any
systematic optimization on our design, and therefore the optical Q factor and optomechanical
coupling rate could be further increased by carefully optimizing the design parameters (e.g.,
by tapering also the holes’ semiaxes) as discussed by other authors [9].

After having chosen a design for the single cavity, we considered three identical defect
cavities on the same nanobeam, separated by an equal distance d, defined as the number
of unperturbed periods between two adjacent cavities. For each distance d, we calculated
the optical and mechanical supermodes. Figure S11b shows the Ey field component for the
three optical supermodes. Note that the optical mode of interest, â0, has no field in the
central cavity, differently from the other two modes. The modes â+ and â− differ in the
relative sign between the field in the lateral cavities and the field in the central cavity, as
expected from the results of the coupled-mode theory (eq. S14). Figure S11c shows the
displacement pattern of three mechanical supermodes. Similarly to the optical case, the
mechanical supermodes b̂+ and b̂− have opposing oscillation phase in the central and the
lateral cavities. Figure S11d shows the frequencies of the three optical supermodes versus
the cavity separation d. The frequency of the mode â0 is expected to be independent of the
cavity interaction J (and therefore the cavity distances). The small frequency deviations
observed can be due to either the finite mesh size (which makes the cavities slightly different
from each other) or to the breakdown of the coupled-mode theory for very short cavity
distances. We notice that this does not affect our theoretical model, since the mechanical
movement does not change the rate J . In fig. S11e we show the estimated optical interaction
rate J as a function of the inter-cavity distance. For each distance d, J has been estimated
by the formula |ω+ − ω−| = 2

√
2J .

In fig. 2I of the main text we show the expected pattern of the mode â0 for the case
in which the system is mechanically perturbed, such that the lateral cavities are detuned
by ∆/J = 0.5. The shown electric field pattern has been calculated analytically from the
formula

E0,∆(x, y) = C0(∆)E0(x, y) + C+(∆)E+(x, y) + C−(∆)E−(x, y), (S24)

where Ei(x, y), with i = {0,+,−}, are the electric field patterns of the supermodes when the
mechanical mode is at rest (fig. S11b), and the coefficients Ci(∆) are calculated analytical
from the coupled mode theory.

XIII. TRIPARTITE INTERACTION IN A FABRY-PEROT CAVITY

The interaction described in this work relies on a variation of the electric field at the
emitter position upon a mechanical displacement. A small field variation occurs in principle
also in a simple Fabry-Perot (FP) cavity when one of the mirrors is displaced by a mechanical
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resonator [10–12]. However, the interaction strength in this case is much smaller than the
one obtained in the two and three cavity systems. In particular, for an emitter placed in a
node of the n-th FP mode, the tripartite coupling rate reads γn = πgg0/ω1, where g is the
maximum Rabi coupling between the QE and the n-th mode, g0 is the dispersive coupling
induced by the mirror movement and ω1 is the fundamental cavity frequency. The coupling
rate bears similarity with the one derived for the two- and three-cavity systems, but with
the important difference that the role of the intercavity interaction rate J is taken by ω1,
which, in the FP cavity, corresponds also to the frequency spacing between the unperturbed
modes. This, in the visible and near-IR regime, severely limits the achievable values of γn,
especially since any effort to reduce ω1 reduces both g and g0.
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