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I. DERIVATION OF AT FROM QUASINORMAL
MODES

We have recently shown [S1] that building upon
Ref. [S2], the scattering matrix for a system with a set of
complex eigenfrequencies ω̃j(j = 1, . . . ,m) can be writ-
ten as:

S(ω) = C + i

m∑
j=1

aj
bjb

T
j

ω − ω̃j
, (S1)

where C is the direct-transport matrix (assumed to be
a scattering matrix itself, thus unitary and symmetric)
and ω̃j are the complex eigenfrequencies of the quasi-
normal modes of the system (we assume the conven-
tion Im(ω̃j) > 0). The general expression for the co-
efficients aj is given in Ref. [S1]. For a single isolated
mode (with eigenfrequency ω̃0), this expression reduces
to a0 = 2Im(ω̃0)/(bTC†b). Then, at the resonance fre-
quency (ω = Re(ω̃0)), Eq. (S1) becomes:

S = C − 2
bbT

bTC†b
. (S2)

Both the direct-coupling matrix C and the resulting
scattering matrix S are unitary. From the relation
bTS†Sb∗ = bTb∗, by replacing Eq. (S2), we obtain that

|bTC†b|2 = |b†b|2. (S3)

The scattering eigenvector b consists of a set of elec-
tric field components along ŝ1 and ŝ2 (b1U and b2U, re-
spectively) which represents the eigenmode polarization
above the structure and a set of field components (b1L and
b2L) which represents the eigenmode polarization below
the structure, in the far-field. Thus, b can be written as:
b = [b1U b2U b1L b2L]

T. As it can be seen by direct
inspection, Eq. (S2) is independent of the choice of the
normalization of b.

As mentioned in the main text, for reciprocal materials
the asymmetric transmission (AT) can be defined as the
difference in orthogonal transmittances for two mutually
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perpendicular polarized incidences in a given direction.
For generality, let us define the two orthogonal linearly
polarized input vectors as:

ŝ1in =

cosψ
sinψ

0
0

 , ŝ2in =

− sinψ
cosψ

0
0

 , (S4)

where the angle ψ gives the polarization angle of input
light with respect to the geometrical reference x axis of
the structure. Let t21 be the transmission component
along ŝ2 when the input is ŝ1in and t12 be the transmis-
sion component along ŝ1 when the input is ŝ2in. The
cross-polarized transmission coefficients, t21 and t12, can
then be calculated as:

t21 =
[
0 0 − sinψ cosψ

]
S ŝ1in

t12 =
[
0 0 cosψ sinψ

]
S ŝ2in. (S5)

The expression for AT can thus be written as:

AT = |T21 − T12| =
∣∣|t12|2 − |t21|2∣∣ . (S6)

The symmetry properties of the example structure can
be used to derive a relation between the polarizations of
the eigenmode above and below the structure. The struc-
ture possesses certain symmetry properties such that it
returns to the original configuration after a possible series
of operations as illustrated in the left panel of Fig. S1.
For simplicity, in the figure we show only the configura-
tion of holes inside a unit cell. The right panel of the
figure contains the corresponding transformation matri-
ces: T1 (an inversion along z), T2 (an inversion along x),
and T3 (a clockwise rotation of 90o).

The total transformation matrix for such a series of
operations can be written as:

T = T3 T2 T1 =

 0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

 . (S7)

From this symmetry it follows that the eigenvectors of
the system must satisfy the relation Tb = ±b [S3]. For
this relation to hold, the eigenmode electric field values
above and below the structure must be related according
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FIG. S1. Series of symmetry operations for the proposed
structure: A cartoon illustrating one possible series of symme-
try operations which would return the proposed structure to
it’s original configurations. For simplicity, the cartoon shows
the arrangement of holes inside the unit cell. Corresponding
transformation matrices are shown alongside.

to Eq. (4) in the main text, which we repeat here for
convenience:

b1L = ±b2U, b2L = ±b1U. (S8)

As a consequence of this symmetry relations, we can
represent the scattering eigenvector b only in terms of
the polarization parameters above the structure:

b =


cos θ e−i

φ
2

sin θ ei
φ
2

± sin θ ei
φ
2

± cos θ e−i
φ
2

 , (S9)

where tan(θ) is the ratio of amplitudes of the field com-
ponents b1U and b2U and φ is the relative phase between
them.

In order to compute the AT, the cross-polarized trans-
mittances T21 and T12 can be obtained from Eq. (S2),
(S3), (S5), and (S9):

T21 = |t21|2 = |(± cos2 θ cos2 ψ e−iφ ∓ sin2 θ sin2 ψ eiφ)|2

T12 = |t21|2 = |(± sin2 θ cos2 ψ eiφ ∓ cos2 θ sin2 ψ e−iφ)|2.
(S10)

AT can then be calculated from Eq. (S6):

AT = |T12 − T21| = cos(2θ) cos(2ψ). (S11)

This equation gives us an insight on the choice of in-
put polarization direction for maximizing the AT. The
maximum AT corresponds to the choice of the input po-
larization along the geometrical reference x axis of the
structure (ψ = 0). In this case, we have a final expres-
sion for AT as:

AT = cos(2θ). (S12)

The polarization of the far-field of eigenmodes can also
be expressed in terms of normalized Stokes parameters,
which, using the notation of Eq. (S9), are defined as

S0 = cos2 θ + sin2 θ = 1,

S1 = cos2 θ − sin2 θ = cos(2θ),

S2 = 2 cos θ sin θ cosφ = sin(2θ) cosφ,

S3 = 2 cos θ sin θ sinφ = sin(2θ) sinφ. (S13)

Using the definition of Stokes parameters, Eq. (S12) can
be recast in the form reported in Eq. (5) of the main text:

AT = |S1|. (S14)

II. PRINCIPLE OF RECIPROCITY AND THE
LIMIT OF AT

According to Ref. [S2], the principle of reciprocity in
coupled-mode theory states that the direct process ma-
trix and the resonant process are related by the expres-
sion

C̃d∗ = −d, (S15)

where d is the vector containing coupling coefficients
which relate the resonance to the input and output waves
and C̃ is the direct coupling matrix of the system. For a
single mode, the coupling vector is proportional to the
far-field amplitudes of the eigenmode with a complex
proportionality coefficient having unit magnitude. i.e.,
d = eiζ b. By expressing the direct matrix as C̃ = eiχC,
where C is the direct matrix defined in Eq. (2) of the
main text, we can write the principle of reciprocity as:

eiχCb∗ = −e2iζb. (S16)

The C-matrix phase factor can be incorporated without
loss of generality in a total phase factor ξ = 2ζ − χ. In
this way, we arrive at Eq. (6) of the main text:

Cb∗ = −eiξb. (S17)

Using Eq. (S9) and the definition of C (Eq. 2 in the
main text) in Eq. (S17), we can write:

r cos θ ei
φ
2 ± it sin θ e−i

φ
2 = − eiξ cos θ e−i

φ
2 (S18)

r sin θ e−i
φ
2 ± it cos θ ei

φ
2 = − eiξ sin θ ei

φ
2 (S19)
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The ratio of Eq. (S18) and Eq. (S19), after some algebraic
manipulations, gives Eq. (7) in the main text:

t

r
=

∣∣∣∣2 cos θ sin θ sinφ

cos2 θ − sin2 θ

∣∣∣∣ =

∣∣∣∣S3

S1

∣∣∣∣ (S20)

From this equation and the normalization of the Stokes
parameters (S2

1 + S2
2 + S2

3 = 1) the intrinsic limit on AT
discussed in the main text, AT ≤ r, is derived.

III. AT AND ITS LIMIT FOR GENERAL
STRUCTURES

For general structures without any symmetry proper-
ties, we are no longer allowed to use the symmetry con-
dition given by Eq. (S8); however, we can express the po-
larization components of the eigenmode field below the
structure in terms of the components above the struc-
ture using principle of reciprocity in Eq. (S17). From
Eq. (S17), it can be shown that:

b1L =
b1U r + b∗1U e−iξ

i t

b2L =
b2U r + b∗2U e−iξ

i t
. (S21)

Using the same notation of Eq. (S9) for the polarization
of the field above the structure, we can write b as:

b =


cos θ e−i

φ
2

sin θ ei
φ
2

1
it (r + ei(φ−ξ)) cos θ e−i

φ
2

1
it (r + e−i(φ+ξ)) sin θ ei

φ
2

 . (S22)

AT can be obtained from Eq. (S6), together with
Eqs. (S2) and (S5), as

AT =

∣∣∣∣ 4r t2 cos2 θ sin2 θ sinφ sin ξ

(1 + r (cos2 θ cos(φ− ξ) + sin2 θ cos(φ+ ξ)))2

∣∣∣∣ .
(S23)

In deriving this equation we have assumed ψ = 0 without
loss of generality in the definition of the input vectors in
Eq. (S4).

We can write Eq. (S23) in terms of the Stokes param-
eter for the polarization above the structure, obtaining
Eq. (9) in the main text, which we repeat here:

AT =

∣∣∣∣ r t2 (1− S2
1) sinφ sin ξ

(1 + r (cosφ cos ξ + S1 sinφ sin ξ))2

∣∣∣∣ . (S24)

As stated in the text, the maxima of AT corresponds to
the points |S1| = r, |S3| = t, ψ = ±π/2, as it can be
verified by computing the first derivatives of Eq. (S24).
In a similar fashion, it can be verified that all these points
are equivalent global maxima.

As an example, in Fig. S2, we plot the maximum AT
(maximized over ξ) given by Eq. (S24) as a function of

FIG. S2. Numerical maximization of AT: The 2-D Plot
shows numerically calculated maximum values of AT given
by Eq. (S24) over the total phase factor ξ ∈ (0, 2π) as a func-
tion of eigenmode polarization parameters S1 and φ. Bright
green spot marks the maximum value of ATmax in the 2-D
space. Green dashed line corresponds to the points in the
polarization space which follow the relation t

r
= S3

S1
.

S1 and φ, for a direct reflection coefficient r = 0.55. The
global maximum of AT is marked by the green dot and
corresponds to the value AT = r = 0.55, as expected.
The dashed green line indicates the curve in polariza-
tion space where the ratio between the Stokes param-
eters is equal to the ratio of the direct-process reflec-
tion and transmission coefficients, i.e., it corresponds to
Eq. (S20). It can be seen that most of this line is along
near-the-limit regions of the maximum AT. As discussed
beforehand, all the structures with the same symmetry
as the one proposed in this work follow the same relation.
As a consequence, structures having symmetries of this
kind have significant prospects for offering AT near the
fundamental limit.

IV. IMPLICATIONS OF ANGULAR
DEPENDENCE

In all the simulations and calculations presented in the
main text, we consider light which is incident normally
onto the sample. However, a real experimental setup in-
volves the use of finite-size incident beam with a finite
angular spread. It is thus important to calculate the
variation of AT as a function of angle of incidence. This
is particularly relevant to the example of a planar pe-
riodic sample as we used in our example, as its modal
bandstructure will depend on angle.



4

0.10 0.05 0.00 0.05 0.10
kx/k0

0.10

0.05

0.00

0.05

0.10

k y
/k
0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

A
T

FIG. S3. AT at oblique incidence: Variation of AT as a func-
tion of in-plane wave-vector at a frequency of ω0/2π = 363.78
THz from FEM simulations. In plane wave vector is shown
in units of k0 = ω0/c.

We consider a beam of light which is polarized per-
pendicularly to the in-plane axis ŷ and propagates along
either the ẑ or −ẑ directions. As a consequence of the
finite size of the beam, the incident electric field can be
described as the superposition of plane waves with dif-
ferent in-plane wavevectors k‖ = (kx, ky):

E(r) =

∫
dkxdky

E(kx, ky)√
k2x + k2z

 −kz0
kx

 ei(kxx+kyy+kzz),
(S25)

where E(kx, ky) corresponds to the amplitudes of the in-

plane Fourier components and kz = ±(k20 − k2x − k2y)1/2.
In Fig. S3, for a given frequency (ω0/2π = 363.78 THz),

we calculate the AT of the system introduced in Fig. 2
of the main text as a function of the in-plane wavevec-
tor k‖ = (kx, ky). The calculations have been performed
with the finite element method. As evident from the fig-
ure, AT varies with the variation of the incident angle
with respect to normal incidence (kx = ky = 0). This
is likely result of the fact that for finite angles the mode
frequency is expected to shift away from the resonance
frequency ω0 at normal incidence, as well as a potential
evolution of the mode’s polarization along the photonic
crystal band. From the data in the figure, we can esti-
mate a maximal half opening angle for the incident field
of the order of NA ' 0.06, which corresponds, assuming a
Gaussian envelope for the field, to a minimal beam waist
of the order of w0 ' 5λ0. This value also constrains the
minimal size of the sample, and it seems fully compatible
with realistic experimental and fabrication conditions.
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