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Nonlinear cavity optomechanics with
nanomechanical thermal fluctuations
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Although the interaction between light and motion in cavity optomechanical systems is

inherently nonlinear, experimental demonstrations to date have allowed a linearized

description in all except highly driven cases. Here, we demonstrate a nanoscale opto-

mechanical system in which the interaction between light and motion is so large (single-

photon cooperativity C0E103) that thermal motion induces optical frequency fluctuations

larger than the intrinsic optical linewidth. The system thereby operates in a fully nonlinear

regime, which pronouncedly impacts the optical response, displacement measurement and

radiation pressure backaction. Specifically, we measure an apparent optical linewidth that is

dominated by thermo-mechanically induced frequency fluctuations over a wide temperature

range, and show that in this regime thermal displacement measurements cannot be described

by conventional analytical models. We perform a proof-of-concept demonstration of

exploiting the nonlinearity to conduct sensitive quadratic readout of nanomechanical

displacement. Finally, we explore how backaction in this regime affects the mechanical

fluctuation spectra.
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I
n cavity optomechanics, the interaction between light in an
optical cavity and the motion of a mechanical resonator enables
sensitive optical readout of displacement, as well as manipula-

tion of the motion of the resonator through optical forces1. This has
allowed demonstrations of sideband and feedback cooling of the
mechanical resonator near its quantum ground state2–5, squeezing
of light6–8 and of the mechanical zero-point fluctuations9–11,
entanglement12 and state transfer13 between the optical and
mechanical degrees of freedom, as well as detection of radiation
pressure shot noise14,15 and non-classical correlations16–19. In all of
these examples, the coupling between fluctuations of the optical
field and the mechanical displacement can be regarded as linear for
all intents and purposes.

However, the optomechanical interaction is inherently
nonlinear. Indeed, the cavity optomechanical interaction
Hamiltonian reads Ĥint¼�‘ g0âyâx̂=xzpf , where â ây

� �
is the

annihilation (creation) operator for the optical cavity field, x̂ is
the displacement operator for the mechanical resonator and : is
the reduced Planck constant. The photon–phonon coupling rate
g0¼ (@oc/@x)xzpf quantifies the change of the cavity frequency oc

due to a displacement the size of the zero-point fluctuations of the
resonator xzpf. This interaction Hamiltonian leads to nonlinear
behaviour, as the equations of motion it generates contain
products of two operators. The linearized form of the interaction
Ĥint¼� ‘ g0a dây þ dâ

� �
x̂=xzpf does not contain the nonlinear

terms, but usually suffices to describe the dynamics of fluctua-
tions1. This form emerges when the cavity field is written as the
sum â¼aþ dâ of an average coherent field �a and fluctuations dâ,
and the term containing dâydâx̂ is neglected by assuming
dâ � a. The linearization is generally valid if the fluctuations
dâ, insofar as they are induced by mechanical motion, do not
approach or exceed the coherent field �a. However, the assumption
that dâ � a is not valid if mechanical fluctuations shift the
cavity completely in and out of resonance with the optical drive,
that is, when they produce a cavity frequency shift comparable to
the optical linewidth k. Then, nonlinear processes become
crucially important, and qualitatively different effects can occur.

In the quantum domain, intriguing implications of this
nonlinearity are expected in the single-photon strong-coupling
regime when the coupling rate g0 exceeds the optical and
mechanical loss rates k and G, respectively. There, quantum-level
mechanical fluctuations induce a nonlinear response, creating
non-classical states of both light and motion when the mechanical
frequency Om approaches the optical linewidth as well20–22. In
the so-called bad-cavity limit (k4Om), the nonlinearity of the
interaction provides a useful path towards creating motional
quantum states, for example through performing quadratic
measurements of displacement (proportional to x̂2)23–27.

In macroscopic or chip-based optomechanical implementations,
the breakdown of linearity when dâ\a has so far only been
experimentally relevant for mechanical resonators driven to large
amplitude, for example through optomechanical parametric ampli-
fication. In that case, nonlinear effects determine the maximum
amplitude of optomechanical self-oscillation1,28–32 and can lead to
complex nonlinear dynamical phenomena such as chaos33–35.

Here, we establish and explore the regime where even intrinsic
Brownian motion induces cavity frequency fluctuations larger
than the optical linewidth. In this regime, the nonlinear nature of
the cavity optomechanical interaction becomes important in all
essential phenomena, including optomechanical displacement
measurement and radiation pressure backaction. The regime is
defined by g0

ffiffiffiffiffiffiffiffi
2nth
p

\k, where nth¼kBT=‘Om is the average
phonon occupancy of the mechanical mode with frequency Om,
in thermal equilibrium at a temperature T and kB is the
Boltzmann constant. It is clear from this condition that any
optomechanical system in which the ratio g0/k is increased

will enter this regime before reaching the single-photon strong-
coupling regime, unless the mechanical resonator is pre-cooled to
its ground state. The condition can equivalently be expressed as
C0\k=g, that is, the single-photon cooperativity C0�4g0

2/kG
being larger than the ratio of optical decay rate and mechanical
thermal decoherence rate g � Gnth. In our experiments, we
follow a strategy of exploiting subwavelength optical confine-
ment36 to reach a single-photon cooperativity around 103; two to
three orders of magnitude larger than typical values in nanoscale
optomechanical systems to date1,37,38, and only comparable with
cold-atom implementations15,39. In the systems demonstrated
here, the apparent optical linewidth is dominated by the
transduced thermal motion over a wide range of temperatures,
and the transduction becomes extremely nonlinear. We
numerically implement a model that describes transduction in
this regime, in contrast to the conventional analytical description,
which fails for fluctuations that approach the linewidth.
Moreover, we analyse how the nonlinear response of the
radiation pressure force to stochastic fluctuations alters the
shape of mechanical fluctuation spectra. Finally, we provide a
proof-of-concept demonstration of exploiting the nonlinearity to
conduct sensitive quadratic readout of nanomechanical
displacement.

Results
Sliced photonic crystal nanobeam. Figure 1a shows the opto-
mechanical system we employ. It combines low-mass, megahertz-
frequency, nanomechanical modes with subwavelength optical field
confinement in a sliced photonic crystal nanobeam36, to establish
strong optomechanical interactions with photon–phonon coupling
rates g0 in the range of tens of MHz. The fundamental mechanical
resonance of the sliced nanobeam, shown in Fig. 1b, strongly
influences the gap distance d in the middle of the beam. The
motion of the resonator in this mechanical mode is associated
with a simulated effective mass of 1.5 pg, leading to relatively large
zero-point fluctuations xzpf¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
‘=2mOm

p
¼43 fm. As shown in the

optical field profile of the fundamental cavity resonance of the
structure in Fig. 1c, the nanoscale gap in the middle of the beam
confines the light to a small area, which makes the optical cavity
resonance frequency oc strongly dependent on the gap size d
between the two halves of the nanobeam. With the fabricated gap
size of 45–50 nm, we simulated the optical frequency change due to
a displacement of the beams to be @o/@x/2p¼ 0.8 THz nm� 1,
where x�d/2. This leads to an expected optomechanical coupling
rate of g0/2p¼ 35 MHz. We decrease the optical cavity decay rate
and increase the outcoupling at normal incidence by engineering
the angular radiation spectrum of the sliced nanobeam
structure40,41 (Methods section). The resultant simulated optical
decay rate is 8.8 GHz, showing that the sliced nanobeam design is
capable of combining large optomechanical interactions with
relatively low optical losses (Q4104). We believe that further
optimization along these lines could, in principle, lead to still larger
optical quality factors.

We employ a balanced homodyne detection scheme, schema-
tically shown in Fig. 1d, to study the fluctuations imparted on the
light in the nanobeam cavity through the optomechanical
interaction (Methods section). Figure 2a depicts fluctuation
spectra recorded with an electronic spectrum analyser, showing
the two fundamental mechanical resonances of one device,
measured at 3 K with the laser on-resonance with the cavity. We
ascribe the two resonances to the two half-beams moving at
slightly different natural frequencies, instead of the ideal
antisymmetric eigenmode depicted in Fig. 1b. The fact that in
this device the two resonances are nearly of equal strength
indicates that the two half-beams are mechanically coupled at a
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rate smaller than their intrinsic frequency difference36, and thus
moving approximately independent of each other; stronger
mechanical coupling would result in hybridization into
symmetric and antisymmetric eigenmodes with different optical
transduction strengths.

Modification of optical response. The signal strength of the
transduced motion around the cavity resonance wavelength of
1457.5 nm, measured at 3 K and at room temperature, is shown in
Fig. 2b as a function of laser detuning. The fluctuations are
recorded while continuously sweeping the piezo-mounted
mirror over multiple interferometer fringes, thus averaging the
measured signal quadratures. As we analyse in detail elsewhere
(La Gala et al., manuscript in preparation), the resulting signal
strength acquires a simple single-peaked detuning dependence
with a maximum when the laser is tuned to the cavity resonance
(Methods section). As Fig. 2b shows, the apparent linewidth of
the optical resonance is strongly influenced by temperature. We
infer from this that the frequency fluctuations of the cavity due to
the thermal motion of the mechanical resonator dominate the
response which occurs when they are larger than the intrinsic
optical linewidth. This is illustrated in Fig. 2c: while the intrinsic
optical response of the cavity is Lorentzian with linewidth
k (orange thin lines), the distribution of cavity frequency
fluctuations due to thermal motion has a Gaussian spectrum
(brown thick line), whose linewidth LG is related to the root-
mean-square (r.m.s.) value of the frequency fluctuations dor.m.s.

as LG¼2
ffiffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

dor:m:s:. In the bad-cavity limit we consider here,
we model the observed cavity response as a Voigt lineshape,
which is a convolution between the Lorentzian cavity response
and the Gaussian distribution of cavity resonance frequencies due
to the Brownian motion. We note that the measured electronic
power spectral density is proportional to the square of the optical
response, which leads to a smaller apparent linewidth in the
detuning dependence shown in Fig. 2b. In the following, we only
report the extracted linewidth (Methods section), which directly
corresponds to the optical loss rate k in the low-temperature
limit, and the full width at half maximum of the frequency
fluctuation distribution in the high-temperature limit.

As the thermomechanical displacement variance is given by
x2

th

� �
¼2nthx2

zpf (assuming dynamical backaction is negligible), the
induced frequency fluctuations due to a single-mechanical mode

at frequency Om are characterized by a r.m.s. amplitude

dor:m:s: �
ffiffiffiffiffiffiffiffiffiffiffiffi
do2h i

p
¼g0

ffiffiffiffiffiffiffiffi
2nth
p

¼g0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kBT=‘Om

p
; ð1Þ

which reveals a square-root dependence on temperature. In case
multiple independent mechanical modes are coupled to the
optical cavity, the variances of the cavity frequency fluctuations
are added, that is, do2

r:m:s:¼
P

jhdo2
j i, which preserves the

overall temperature dependence. Figure 2d shows the full
measured temperature dependence of the apparent linewidth,
which exhibits the expected square-root dependence on
temperature at higher temperatures. We fit the data points using
an equation that approximates the linewidth of the Voigt
lineshape (Methods section), with a fixed Lorentzian contribution
due to the intrinsic optical loss and a Gaussian contribution that
follows equation (1). The resulting fit curve is shown in Fig. 2d,
together with its asymptotes (thin blue lines). These asymptotes
allow us to directly extract the intrinsic optical linewidth k and
the variance of thermal-motion-induced frequency fluctuations of
the cavity, without further calibration. There are two mechanical
resonances that show significant coupling to the optical cavity
resonance as shown in Fig. 2a, and we derive the ratio between
their coupling strengths from the ratio between the signal
strengths at the two mechanical resonance frequencies36. Using
this ratio and the measured resonance frequencies, we obtain
g0/2p¼ 24.7 and 25.4 MHz for the two mechanical modes, which
corresponds closely to the predicted value for an ideal
antisymmetric mode of 35 MHz, since

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24:72þ 25:42
p

¼35:4.
This large optomechanical coupling rate, combined with the

extracted optical decay rate of k/2p¼ 20.4 GHz and the
mechanical decay rate of G/2p¼ 100 Hz (measured at 3 K),
means that this device has a single-photon cooperativity
C0¼4g2

0=kG¼1:1�103. The single-photon cooperativity is a
metric that combines optomechanical coupling and losses1,38. It
signals the inverse of the number of intracavity photons needed to
perform a measurement at the standard quantum limit, if all
photons escaping the cavity could be employed towards that
measurement. Interestingly, the combination of quadrature-
averaged detection with temperature-dependent linewidth
measurement allows direct extraction of C0, with no other
calibration than that of the mechanical bath temperature. The
extremely high value we report here, which exceeds previously
reported nano-optomechanical architectures by two to three
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Figure 1 | Structure and set-up. (a) Electron microscope image of a silicon sliced nanobeam. The shown part is free-standing and has a thickness of

250 nm. The scale bar is 2 mm and is valid for a–c. (b) Simulated displacement profile of the fundamental mechanical resonance, which strongly modifies

the gap size. (c) Simulated transverse electric field of the fundamental optical cavity resonance. The inset shows an enlarged view of the cavity region

(scale bar 1mm), formed by a tapered variation of the distances between, and sizes of, the holes. (d) Schematic diagram of the employed balanced

homodyne interferometer measurement set-up. The reflection from the sliced nanobeam is interfered with the light from the reference arm, enabling

near-quantum-limited measurement of fluctuation spectra even with low power incident on the sample (see Methods section for details).
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orders of magnitude1,37,38, highlights the prospects of such
systems for measurement-based quantum control of motion.

Nonlinear transduction. When the relative cavity fluctuations
dor.m.s./k are large, a typical mechanical oscillation samples the full
width of the optical Lorentzian lineshape. Since this lineshape is
nonlinear, higher-order harmonics are expected to appear in the
transduced optical fluctuation spectrum. At room temperature, the
cavity frequency fluctuations due to both mechanical modes have
an amplitude dor:m:s:¼ð2

P
j nth;jg2

0;jÞ
1=2¼2p�69 GHz � 3:4k. As

shown in Fig. 3a, at room temperature the measurement signal
indeed contains fluctuations at (mixed) integer multiples of the two
fundamental mechanical resonances, that is fj;k¼ jf1� kf2j j, where j,
kA{0, 1, 2, y}. Around the fundamental frequencies near 3.3 MHz,
we observe odd mixing terms up to ninth order (for example a peak
is visible at f5,� 4¼ 5f1� 4f2), and around the sum frequency at
6.6 MHz, even mixing terms up to tenth order can be identified.

At a temperature of 3 K, the ratio between the cavity frequency
fluctuations, caused by both mechanical modes, and the intrinsic
optical linewidth is dor.m.s./k¼ 0.34, which still leads to
significant higher-order transduction. Figure 3b shows a direct
comparison of the spectra obtained at room temperature and at
3 K. As a measure for the higher-order transduction, we take the
ratio between the second- and first-order transduction. The ratio
between the orders is independent of other parameters, such that
it gives direct insight in the strength of the nonlinearity. This ratio
is clearly larger at higher temperature (its inverse is indicated with
arrows in Fig. 3b). The difference in the signal-to-noise ratio
between low and high temperatures is due to the mechanical
linewidth being smaller at low temperatures (by a factor of 2) as

well as a redistribution of modulation power among higher
harmonics, as explained in the following.

Higher-order transduction (for a single-mechanical mode) has
previously been described with an analytical model that is based
on a Taylor expansion of the measurement output around the
average detuning23,24,36. For low-amplitude modulation, the
higher-order terms in this expansion can be approximated as
independent. Mathematically, this is based on an order-by-order
approximation cosOmtð Þk� 2�ðkþ 1Þ cos kOmt. The resulting
expression for the maximum signal power measured at the
(multiple of the) resonance frequency kO is

P2
� �

kO¼2A2k !
2 do2h i
k2

� �k
; ð2Þ

where A is a constant that depends on the optical power as well as
the coupling efficiency to the cavity (for details, see Methods
section and La Gala et al., manuscript in preparation).

In Fig. 3c, the dashed line shows the ratio between the second-
and first-order transduction that follows from this order-by-order
approximation, (2dor.m.s./k)2. The data points labelled I and II,
which represent room-temperature measurements reported in
refs 24 and 36, respectively, are still well-explained by the order-
by-order approximation. For the devices under study, dor.m.s./k is
so large that this approach breaks down. This is shown by our
temperature sweep data, where we take the fitted area Afj under
the peaks at the fundamental frequencies and at twice the
frequency (labelled in Fig. 3a), and plot their ratio:

A2f1 þAf1 þ f2 þA2f2

� �
= Af1 þAf2

� �
. This ratio reduces to A2f/Af if

the two frequencies f1, f2 coincide, which supports directly
comparing it to the single-mode prediction of the order-by-order
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Figure 2 | Optical linewidth broadening. (a) Recorded optically measured spectra of the two fundamental mechanical resonances with frequencies f1 and

f2 (PSD, power spectral density; optical power incident on sample: 11.3 nW). Grey noise spectra were recorded with the signal arm of the interferometer

blocked. Black lines show the Lorentzian fit, used to determine the linewidths (full width at half maximum) shown in the figure. The displacement spectral

density scale on the right-hand side assumes linear transduction of the known thermal motion of the structure at the cryostat temperature. (b) Detuning

dependence of the measured transduced thermal motion, measured as the band power at f1, the lowest mechanical frequency, at room temperature and at

3 K. The black solid and dashed lines show fits with a Voigt lineshape squared (Methods section), with the widths (full width at half maximum) shown.

(c) Schematic representation of thermal-motion-induced linewidth broadening: the thin orange lines represent the intrinsic cavity response at a few

example detunings, while the thick brown line shows the overall response resulting from averaging over the fluctuating detuning. (d) Optical linewidth

versus temperature. The solid line is a fit with a model that assumes a constant Lorentzian intrinsic linewidth k convolved with a Gaussian with a width

LG that depends on
ffiffiffi
T
p

. The asymptotes (blue) of the fit function allow us to extract k and the optomechanical coupling rates g0,i for the two mechanical

modes (i¼ 1, 2). Extracted values are shown in the figure.
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approximation. The red circles indicate the results for the
same device presented in the other figures, while the blue
squares represent a different device with g0/2p¼ 10.8 MHz and
k/2p¼ 9.0 GHz (Supplementary Note 2).

Where the order-by-order approximation breaks down, the
nonlinear transduction still follows the prediction of our full
model, in which we calculate the expected homodyne output
from a numerical time-domain simulation of the thermal motion
(Methods section). We then Fourier transform the simulated
signal and plot the ratio of the band powers, noting that the
numerical result does not depend on whether we include one or
two mechanical resonances when plotted against total relative
cavity fluctuations dor.m.s./k. This full model prediction is shown
by the black dots connected by solid lines in Fig. 3c. The
numerical simulation follows the experimentally observed trend,
and shows that the ratio between second- and first-order
transduction saturates close to unity at higher fluctuation
amplitudes. We note that only such a numerical approach
correctly takes into account the statistics of the transduced
motion: the strongly nonlinear conversion of displacement to
optical field precludes an analysis based solely on one or several
moments of the displacement distribution. In other words, a
single peak in the fluctuation spectrum at kOm can no longer be
dominantly associated with a specific scattering process involving
k phonons, but also contains contributions due to kþ 2, kþ 4, y
phonons. Although some of the data lie below the expected curve
we note that this cannot be explained by poor thermalization of
the sample. If the sample would not be thermalized at low
temperatures, our estimate of k would be too high and our
estimate of dor.m.s. too low. Both such misestimations would lead
to data points that lie above the predicted trend (black line) in

Fig. 3c, which is not what we observe. Independent measurements
that vary optical power and radiation heat load also indicate good
thermalization of the sample (Supplementary Notes 1 and 2).

Using the numerical model, we calculate the absolute signal
power due to thermal motion at the fundamental frequency f and
its multiples 2f and 3f (points in Fig. 3d). For cavity frequency
fluctuations dor.m.s./k larger than about 10%, both linear and
higher-order transduction no longer follow the order-by-order
approximation given in equation (2) (black lines), which predicts
monotonic increases in signal strength. Instead, we recognize an
optimum single-harmonic signal strength due to cavity frequency
fluctuations, beyond which larger fluctuations cause the cavity to
be off-resonance most of the time. This reduces the transduction
at a single harmonic in the optical signal, instead distributing
energy equally among an increasing number of harmonics as the
system operates deeper in the nonlinear regime.

Quadratic measurement of motion. A measurement that is
directly sensitive to the square of displacement, x2, can be used to
estimate the energy of the mechanical resonator. In the resolved-
sideband regime, displacement-squared optomechanical coupling
hence provides a means to perform quantum non-demolition
measurements of the phonon number42–46. But also in the
bad-cavity limit, measurements of x2 have been proposed as a
possible route to preparing non-classical (superposition) states of
motion of the mechanical resonator23,24,47,48. It is important then
to suppress both linear measurement and backaction, either
through structural design or through active feedback schemes24.
Measurements of x2 can be performed using the nonlinear
transduction we study here, by detecting the transduced motion
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at twice the fundamental frequency, 2f, provided that the sample
temperature is low enough such that the order-by-order
approximation is valid. This gives rise to an effective quadratic
coupling rate given by g2

0=k (ref. 48), which amounts to
2p� 32 kHz in the device presented here. To put that number in
perspective, one can compare it to the quadratic coupling rate
m0¼ @2oc=@x2ð Þx2

zpf in devices that are designed such that the
frequency is directly proportional to the square of the displacement.
A state-of-the-art double-slotted photonic crystal system recently
demonstrated45 a quadratic coupling rate of m0/2p¼ 245 Hz.

In Fig. 4 we show selective linear and quadratic measurements
of mechanical displacement at 3 K. Figure 4a shows the strength
of the first- and second-order transduction (proportional to x and
x2, respectively, in the order-by-order approximation) as a
function of the piezo mirror position that controls the homodyne
phase, which is now no longer continuously swept. The data
follow the expected sinusoidal dependence.

We obtained the spectra in Fig. 4b by positioning the piezo
mirror at the optimum points for first- and second-order
transduction, depicted by the red and blue data points,
respectively. The vertical scale was calibrated by using the
order-by-order approximation, where the area under the peaks in
the spectrum is proportional to the variance of the thermal
motion of the structure, which here provides a lower limit for the
sensitivity. This analysis yields an imprecision for the displace-
ment-squared measurement of 2.0� 10� 25 m2 Hz� 1/2. To
provide some context for this value, with the current mechanical

linewidth this level of imprecision corresponds to the ability
to measure a phonon occupation of 752 with a signal-to-noise
ratio of 1, which is an improvement over the measurement
sensitivity in the proof-of-concept experiment reported in ref. 24
by approximately a factor 50. In the data shown here, the
suppression of linear transduction is 28 dB, which could be
further improved by implementing a feedback loop to lock the
homodyne interferometer phase to a desired value.

It is important to note that our numerical model, as shown
in Fig. 3d, predicts second-order transduction at only 10% of
the strength of the order-by-order approximation for
dor.m.s./kE0.34, which is the size of the relative cavity
fluctuations in our device at 3 K. Therefore, we expect that if
this device is cooled further, to the point where the order-by-
order approximation accurately predicts the transduction, an
even lower imprecision noise of 6.3� 10� 26 m2 Hz� 1/2 would be
recovered without any further optimization. This would be
comparable to a phonon occupation of 238. In the regime where
the order-by-order approximation holds, this imprecision,
expressed as a phonon number nimp scales as

1
nimp
¼16

g0

k

	 
2
Z

ffiffiffiffiffiffiffiffiffiffiffiffi
Pinx
‘ocG

s
; ð3Þ

with Z the coupling efficiency to our cavity, Pin the incident
optical power, and x a constant incorporating the technical
homodyne detector measurement efficiency for both signal and
local oscillator (Supplementary Note 3). With relatively modest
improvements an imprecision at the single-phonon level could be
within reach, for example by improving g0 and k by factors of

ffiffiffi
2
p

and 2, respectively, as well as increasing Z to 40% from the 1.3%
estimated in the current device (Supplementary Note 4), for
example by employing waveguide-based coupling strategies49.
The powers used for acquiring the data above are also low,
corresponding to an average cavity occupation of B0.2 photons.
At higher powers, the mechanical spectrum was affected by
low-frequency noise of the laser through the effects explored in
the next section, an effect that could be ameliorated by for
example shorter measurement times.

It is important to note that to use such measurements to create
quantum superposition states, significant further advances are
needed: first, the nonlinear measurement rate should exceed the
thermal decoherence rate, requiring an imprecision
nimpo 2nthð Þ� 1=2. As such, lower bath temperature and larger
intracavity photon number would be highly beneficial. Second,
active feedback at the mechanical frequency would be needed to
suppress quantum backaction associated with the existent
linear coupling. As noted by Brawley et al.24, suppressing this
to the single-phonon level requires a measurement efficiency
z that satisfies g0

2/k24(1� z)/(8z), where z¼ hZ, and h is the
quantum efficiency of our measurement set-up (Supplementary
Notes 3 and 4). Fulfilling this thus requires a strong investment in
reaching near-unity extraction efficiencies and larger optical
quality factors in these devices.

Radiation pressure force with large cavity fluctuations. The
nonlinear regime not only impacts optical transduction of
motion, but also pronouncedly affects the mechanical fluctuations
themselves through its influence on radiation pressure
backaction. The strongest manifestation of backaction in the
regime where the cavity reacts nearly instantaneously to the
mechanical motion k � Omð Þ is the optical spring effect,
which alters the mechanical resonance frequency depending on
the detuning between a drive laser frequency and the cavity
resonance1. Figure 5a,d show experimentally obtained
spectrograms at low temperature (3 K, incident optical power
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Figure 4 | Quadratic measurement. (a) Transduction of first (f2) and

second (f1þ f2) order peaks (orange and light blue data points, respectively)

while sweeping the piezo mirror position, with 10.5 nW optical power

incident on the sample. The solid lines show sinusoidal fits to the data. The

horizontal scale was derived from the fit to the band power of f2, and the

data at f1þ f2 was shifted horizontally by about 3% to compensate for

measurement drift. (b) Spectra at f2 and 2f2 at optimal mirror positions for

linear and quadratic transduction (red and light blue data points,
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lines are Lorentzian fits, whose area was used to calibrate the vertical scale.
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20.6 nW) and at room temperature (295 K, incident optical power
124 nW) around the fundamental harmonic of one of the
mechanical modes, while Fig. 5c,f show several cross sections at
selected detunings. At low temperature, the observed effect is very
similar to the normal (linearized) optical spring effect, where a
blue-detuned laser shifts the mechanical frequency upwards and
vice versa for red detuning. However, we additionally observe
a broadening of the obtained spectra both when the laser is
red- and blue-detuned by B10 GHz (	k=2). At room
temperature, the spectra also become asymmetric: instead of a
symmetric Lorentzian lineshape, the peak in spectra close to the
optical resonance has a much steeper edge on one side than on
the other side. In addition, the shift of the peak due to the optical
spring effect usually scales linearly with the incident optical
power, but the data set at room temperature shows a smaller,
rather than a larger shift than the data set at 3 K, even though the
used optical power is five times higher.

To account for these observations, we again need to take the
large fluctuations of the cavity frequency due to thermal motion
into consideration. The typical optomechanical model for the
optical spring effect is based on the linearized equations of
motion1, which do not apply in the nonlinear regime we reach
here. To model a single-mechanical mode, we instead calculate an
effective spring constant from the first Fourier coefficient of the
radiation pressure force, while the resonator oscillates
harmonically, x(t)¼ x0 cosOt. For this, we express the radiation
pressure force in the cavity as

Frad¼
‘ @oc=@xð Þnmax

c

1þ u2
; ð4Þ

where u � 2
k Dþ @oc=@xð Þx
� �

with D the average detuning
between the laser and cavity frequency, and nc

max is the maximum

number of photons in the cavity when it is driven at resonance.
The effective spring constant can be directly rescaled to obtain
the frequency shift (Supplementary Note 5). As before, we
numerically sample a thermal distribution to model the behaviour
of the system, in this case by averaging over 104 different
amplitudes x0, such that the displacement variance equals that
from both mechanical modes in the experiment. Finally, we
average the same number of Lorentzian lineshapes with the centre
frequencies given by the simulated frequency shifts and their
widths set to the median linewidth measured in the experiment,
to approximate the intrinsic linewidth at that temperature
(Supplementary Note 5). The resulting simulated spectra are
shown in Fig. 5b,e and plotted as black solid lines in Fig. 5c,f. To
allow overlaying the simulated spectra with the experimental
cross sections, we rescaled all the simulated spectra such that the
maximum value of the spectrum closest to resonance matched the
experimental value. The model reproduces the broadening of
the peaks as well as the asymmetry for the high-temperature data.
At room temperature, a strong edge at larger frequency shifts is
observed in the model, which is absent in the measurements. We
attribute this to the presence of two mechanical modes, which will
tend to soften this effect. An interesting feature in this model is
that the spectra obtained with the laser on-resonance are not
affected at all, and we indeed observed experimentally that at
D=k¼0 the effect is much smaller if not entirely absent.

We also observe that at higher optical powers, beyond
B100 nW at 3 K, the influence of the nonlinear regime on the
optical spring effect leads to imprinting of low-frequency noise on
the mechanical motion as random drifting of the mechanical
frequency. At higher powers still, self-oscillation regularly occurs.
However, the fluctuations due to thermal motion can be larger
than the amplitude at which a self-oscillating state would
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spectra (horizontal axis) versus the optical laser frequency (vertical axis) at two different experimental conditions: (a) cooled at 3 K, incident laser power
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normally saturate, leading to highly complex dynamics. We
believe this leads to observed irregular behaviour, including
random hopping of the oscillation frequency between the two
mechanical modes, and occasional occurrence of instabilities for
both blue and red detuning. Further study and modelling is
needed to explore this regime.

Discussion
Our analysis of both nonlinear transduction and backaction relies
on a numerical model instead of an analytical description, as the
typical order-by-order approximation to describe transduction
breaks down at large relative cavity fluctuation strengths. This
breakdown is related to the fact that the Taylor expansion used to
describe the intracavity field24 as a function of the relative
detuning u � 2

k Dþ do
� �

does not converge for all u. For
example, at average detuning D¼0, the intracavity field can be
written as

a¼
ffiffiffiffiffiffiffiffiffi
nmax

c
p

1þ iu
�

ffiffiffiffiffiffiffiffiffi
nmax

c

p
1� iu� u2þ iu3þ u4 . . .
� �

; ð5Þ

which does not converge for |u|41. At this detuning, u¼ 2do/k
represents the cavity frequency fluctuations due to the thermal
motion, meaning the power series does not converge when the
mechanical motion changes the cavity frequency by more than a
linewidth. Therefore, this model cannot be used to extrapolate the
expected sensitivity of optomechanical measurements in the
nonlinear regime we describe here. Our numerical model relies
on a direct calculation of the optical response to mechanical
motion, which can be performed for any cavity frequency change
do. It is however crucial to correctly simulate the distribution of
mechanical amplitudes within the thermal mechanical state.

We have demonstrated the effects of the optomechanical
nonlinearity in a system that operates in the regimeffiffiffiffiffiffiffiffi

2nth
p

g0=k\1, and described how it modifies the optical response,
transduction, and backaction over a wide range of temperatures. It
is to be expected that a growing number of optomechanical systems
will operate in this regime as parameters continue to improve, and
the single-photon strong coupling regime (g04k, G) is approached.
Indeed, various characteristics of the nonlinear regime we
demonstrate are reminiscent of the expected effects due to
quantum fluctuations in the single-photon strong coupling regime,
including a modification of the optical response and the appearance
of strong higher-order sidebands in optical fluctuation spectra.
Whereas our sliced photonic crystal nanobeam devices demon-
strate these effects for the bad-cavity limit, the regime has equally
important impact for devices in the resolved-sideband regime
k � Omð Þ, although precise manifestations are expected to vary.

In particular, the optical excitation spectrum will be altered by
displaying multiple discrete sidebands20,21. Moreover, backaction
forces acquire an additional delay factor due to the longer lifetime
of cavity excitation, which will lead to fluctuating damping and
driving forces affecting the motion. As the manipulation of
mechanical thermal noise is a topic of interest, for example, in
sensing applications, it could be worthwhile to investigate the
effects of the combination of dynamical backaction and the
optomechanical nonlinearity. Notably, it would allow manipulating
thermal fluctuations beyond a Gaussian distribution. Similar aims
in the bad-cavity limit could be reached through nonlinear
measurement, such as the displacement-squared measurements
we demonstrated.

Interestingly, the alteration of the optical response due to
thermal motion provides a new method to directly determine the
intrinsic optical linewidth k and the optomechanical coupling
rate g0: the ratio of different harmonics of the transduced
mechanical spectrum allows retrieving the relative frequency
fluctuations dor.m.s./k. Together with a measurement of the

optical excitation linewidth (Methods section, equation (13)) this
uniquely determines both g0 and k. This method only requires
further knowledge of the bath temperature and the mechanical
frequency. We note that there is no need for any other
calibration, including characterization of optical powers.

The large single-photon cooperativity C0 in the structures we
present here offers prospects beyond the exploitation of the
optomechanical nonlinearity, in particular for quantum measure-
ment and control of mechanical motion. For example, the
requirement for feedback cooling to the ground state (thermal
occupancy below 1) is that the cooperativity C0nc4nth=ð9z� 1Þ,
where nc is the number of photons in the cavity5,50,51. In our
sliced nanobeam structure, the measurement sensitivity is
currently limited by the coupling efficiency, which we estimate
to be ZE1.3% (Supplementary Note 4). The double-period
modulation method we use to improve the coupling efficiency of
a photonic crystal nanobeam cavity at normal incidence has
previously been shown41 to yield a simulated collection efficiency
of more than 20%. Therefore we expect that by either improving
the optical design, or by employing waveguide-based coupling
schemes49,51, the coupling can be further increased in our current
free-space set-up. For example, with a detection efficiency of 2/9,
ground state preparation would be in reach at a very modest
minimum cavity occupation of nc417 photons with the
demonstrated parameters. Finally, the large optomechanical
coupling strength in combination with low loss provides other
opportunities for measurement-based control in the bad-cavity
limit, such as conditional state preparation of the mechanical
resonator by pulsed measurements52, or quantum state swapping
between the optical and mechanical degrees of freedom27.

Methods
Sliced photonic crystal nanobeam design. Eigenfrequency calculations were
performed using finite element software (COMSOL Multiphysics). For optical
simulations, perfectly matched layers were used to allow the extraction of the
optical radiation losses. To estimate @oc/@x, the optical frequency shift due to
mechanical motion, x (half of the gap size) was increased by 1 nm the full length of
the nanobeam, leading to a change in the simulated eigenfrequency.

The sliced nanobeam design confines light in the transverse direction due to
total internal reflection, while along the nanobeam the photonic crystal patterning
creates a bandgap for light. An optical cavity is formed by a defect region in the
middle with holes of different shape and periodicity, which is tapered to the
periodic outer region over 5 holes to minimize optical losses40. In addition, we
create a low-efficiency outcoupling grating in the structure by making the hole sizes
alternatingly 5% wider and narrower. This double-period modulation allows part of
the cavity field to scatter out at normal incidence41, which is efficiently collected by
our free-space optical measurement set-up. Our experimental results indicate that
this strategy increases the coupling efficiency to the optical cavity from
approximately 0.1% to 1–2% (Supplementary Note 4).

Fabrication. Devices were fabricated from a silicon-on-insulator substrate
(SOITEC), with a 250 nm silicon device layer on top of 3mm silicon oxide. Patterns
were written using electron-beam lithography in an 80 nm layer of spincoated HSQ
resist (FOX-15, Dow Corning) and developed using TMAH. The silicon layer was
etched in an inductively coupled plasma etcher using a combination of Cl2 and
HBr/O2 gases. Finally, the nanobeams were released to be free-standing by wet
etching with HF, which also dissolves leftover resist and oxide-based deposits formed
during plasma etching. The wet etch was followed by critical point drying to prevent
collapse of the nanobeams. The device layer of silicon-on-insulator wafers typically
contains compressive stress, which can induce buckling of the nanobeams even when
using critical point drying. We avoided this by incorporating stress-relief features in
the support structure around the free-standing nanobeams. We note that the
fabricated devices exhibit optical quality factors that are somewhat lower (by a
factor B2) compared to the designed value, likely due to remaining surface
roughness, and structural deviation from the designed pattern.

Measurement set-up. A closed-cycle cryostat (Montana Cryostation C2) was used
to control the sample temperature between 3 and 300 K. We used an aspheric lens
positioned outside the cryostat window with an effective focal length of 8 mm a
numerical aperture of 0.55 to focus the laser beam (New Focus Velocity 6725,
linewidth r200 kHz) on the sample and to collect the reflection in free space.
A balanced detector with two nominally identical photodiodes (New Focus 1817-FS)
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detected the output of the homodyne interferometer, schematically shown in Fig. 1c.
The detector signal was then Fourier transformed and the spectrum recorded with an
electronic real-time spectrum analyser (Agilent MXA). The optical power in the
reference arm was 135mW or more, ensuring that the optical shot noise was at least
as large as the electronic noise. The pressure in the cryostat was typically 0.3 mbar at
room temperature, and well below 10� 4 mbar at cryogenic temperatures.

Sample thermalization. A measurement of the power dependence of the
transduced signal (Supplementary Note 1) was performed to verify that the
measurement of the thermal motion of the nanobeam is not influenced by additional
heating by the laser beam down to the lowest temperature. We then used the
temperature sensor placed next to the sample in the cryostat to calibrate the scale for
the displacement power spectral density Sxx in Figs 2a and 4b. Measurements with
different thermal radiation heat loads show that the presence of a cold window
ensures that the sample is thermalized at all temperatures (Supplementary Note 2).

Balanced homodyne interferometer signal. The optical response of the balanced
homodyne interferometer probing our cavity optomechanical system is a function
of the average detuning �D between the laser frequency and the cavity frequency, the
frequency shift of the cavity due to mechanical motion do, the homodyne phase y,
the cavity linewidth k, and various constant factors such as the coupling efficiency
to the cavity, and the optical power used for the measurement. To obtain the full
expression, we start by describing the reflection from our nanobeam cavity using
input-output theory

sc¼sin ceif � Zk
iDþ k=2

� �
; ð6Þ

with Z the coupling efficiency, sc is the amplitude of the reflected light and sin

the amplitude of the input light. The term ceif is due to non-resonant
scattering from the nanobeam structure or the substrate. The total detuning
D � Dþ do¼Dþ @o

@x x is the sum of the laser detuning and the shift caused by
mechanical motion. If f¼ 0, the resulting reflectivity shows a Lorentzian response,
while other values will lead to the more general case of a Fano lineshape.

Using balanced homodyne detection, with the light in the reference arm, or
local oscillator, described as sLO¼ |sLO|eiy and the input to the cavity sin taken to be
real, the output of the detector is proportional to a virtual optical power P

P
‘o
¼ iffiffiffi

2
p sc þ

1ffiffiffi
2
p sLO

����
����

2

� iffiffiffi
2
p sLO þ

1ffiffiffi
2
p sc

����
����

2

¼i sLOs
c � s
LOsc
� �

¼ sLOj j sinj j � 2c sinðy�fÞþ Zk 2D cos yþ k sin yð Þ
D2 þ k2=4

� �
:

ð7Þ

Substituting D � Dþ @o
@x x yields the relationship between the measurement

output P and the displacement x.

Optomechanical transduction with order-by-order approximation. We
consider the Taylor expansion of the measurement output P for small fluctuations
do around �D

P Dþ do
� �

¼P D
� �
þ
X1
k¼1

dok

k !

@kP
@ok

: ð8Þ

For harmonic fluctuations do¼ do0 cosOmt, the individual terms of this
expansion contribute at different frequencies. To leading order, coskj¼ 1

2k� 1 cos kj,
which means the higher-orders are completely spectrally separated, and we can
consider this expansion order-by-order. If multiple mechanical modes are coupled to
the optical cavity, the expansion will also include cross terms p cos(O1t)j� k cos(O2t)k,
which are spectrally separated from higher-order terms in the same regime where the
approximation holds for a single-mechanical mode. This means we can account for
multiple modes by simply adding the variances they contribute in a specific order, and
in the following we consider a single mode for simplicity.

We measure the power spectral density SPP(O), whose integral over frequency
gives the variance hP2i. Averaging over the homodyne phase, the detuning
dependence for (@kP/@ok)2 has a simple Lorentzian lineshape, raised to the power
(kþ 1), as we analyse elsewhere (La Gala et al., manuscript in preparation). The
maximum contribution is therefore at resonance (�D¼ 0) and can be expressed as

@kP
@ok

� �2

¼A2k ! 2 2
k

� �2k

; ð9Þ

where A2¼ 8PinPLOZ2 is a constant prefactor that depends on the optical powers
Pin, PLO in the signal and reference arm, respectively, and on the coupling efficiency
to the cavity Z.

We now calculate the band power at a frequency kOm, where only the kth term
of the Taylor expansion contributes, as

P2
� �

kOm
�
Z
kOm

SPP dO¼A2 2
k

� �2k

dok
� �2
D E

kOm

ð10Þ

Since do¼ (@oc/@x)dx, we can use the properties of the higher moments of x. For
thermal motion, and again using the order-by-order approximation24,53, we use

xk
� �2
D E

kOm

¼ k !

2k� 1
x2
� �k

; ð11Þ

which can be directly substituted into equation (10) to obtain

P2
� �

kOm
¼2A2k !

2 do2h i
k2

� �k

; ð12Þ

used in equation (2).
Supplementary Fig. 1 shows a spectrogram demonstrating the detuning

dependence of the nonlinear transduction.

Power spectral density and Voigt linewidth. We plot the power spectral density
of the electronic output signal of our measurement set-up, which has units of
W Hz� 1. This corresponds to a power spectral density of a (virtual) optical power
P, SPP, which has units of W2 Hz� 1. As a consequence, the Lorentzian detuning
dependence of the optomechanical transduction leads to a Lorentzian-squared
dependence in the power spectral density. Similarly, we observe the square of the
Gaussian distribution of cavity frequencies due to thermal motion. Therefore, we fit
the square of a Voigt lineshape, which models the convolution of a Lorentzian and
a Gaussian lineshape, to our data, and extract the linewidth of the non-squared
Voigt lineshape. This value then directly corresponds to either the optical loss rate
k or the amplitude of the frequency fluctuations dor.m.s., in the respective limits
where k � dorms or vice versa.

We use an empirical equation for the linewidth of a Voigt lineshape54

0:5346kþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:2166k2 þ 8 ln 2do2

r:m:s:

q
; ð13Þ

where k is the linewidth of the Lorentzian lineshape and 2
ffiffiffiffiffiffiffiffiffiffi
2 ln 2
p

dor:m:s: is the
linewidth of the Gaussian lineshape. To fit the linewidth as a function of
temperature, we substitute dor:m:s:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2

0 kBT=‘Om

p
. To account for multiple

independent mechanical modes, we can calculate the individual optomechanical
coupling rates from the asymptote of the fit curve if we know the ratio between the
transduced peaks in the spectrum36. The variances due to the modes j add up,
do2

r:m:s:¼
P

jhdo2
j i, which means equation (1) is modified to

do2
r:m:s:¼

X
j

g2
0;j

‘Om;j

� �
2kBT: ð14Þ

Numerical model for nonlinear transduction. Time traces for the mechanical
displacement x were generated for one or two resonance frequencies Om. To
simulate thermal motion, we randomly change the amplitude A and phase j of
harmonic motion x¼A cos(Omtþj). The points at which A and j are changed
are taken from a Poissonian distribution with mean time between jumps taken to
be the mechanical damping time G. The new amplitude is taken from an expo-
nential distribution characterized by a mean proportional to the average thermal
occupation nth, while the phase is taken from a uniform distribution. A time trace
of the measurement output P was generated from the position time trace using our
full model for the transduction (equation (7)) and phase-averaging the homodyne
measurement. The discrete Fourier transform of this time trace allowed us to
extract the signal strength at Om and at higher-order multiples or mixing terms.

Data availability. All relevant data is available upon request.
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