
File name: Supplementary Information 
Description: Supplementary Figures, Supplementary Notes and Supplementary References 
 
File name: Peer Review File 
Description:  
 



2 4 6 8 10
Frequency (MHz)

205.5

205.6

205.7

205.8

205.9

O
p

ti
ca

l 
fr

e
q

u
e
n

cy
 (

T
H

z)

−120

−115

−110

−105

−100

P
o
w

e
r 

sp
e
ct

ra
l 
d

e
n

si
ty

 (
d

B
m

/H
z)

2 4 6 8 10
Frequency (MHz)

−120

−110

−100

P
S

D
 (

d
B

m
/H

z)

a

b

Supplementary Figure 1 | Nonlinear transduction as a function of detuning.
(a) Electronic spectrum analyser signal taken at room temperature, as a function of
the optical frequency. (b) Cross section at cavity resonance frequency corresponding
to Fig. 3a in the main text. As can be seen in (a), due to the quadrature-averaged
homodyne detection, all peaks show a single-peaked detuning dependence which is
maximum at resonance.

Supplementary Note 1
Power dependence of transduced mechanical mo-
tion

The transduction of mechanical motion depends on the optical power used, as
shown in the dependence of 〈P 2〉 on A2 ∝ PinPLO in Eq. 2 of the main text. In
particular, we expect the measured band power to be linear in both the power
in the signal arm Pin, incident on the cavity, and the power in the reference
arm PLO. Deviations from a linear relation indicate heating or cooling of the
mechanical motion due to the additional laser power11. Supplementary Figure 22
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Supplementary Figure 2 | Power dependence. Measured band power of the two
fundamental mechanical frequencies f1 and f2 (area under the fitted Lorentzian peak)
as a function of the incident optical power Pin, with the laser frequency on-resonance
with the cavity. The power in the reference arm, PLO, was kept constant. The black
dashed and solid lines show linear fits to the data for f1 and f2, respectively.
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Supplementary Figure 3 | Characterisation of a second device. Optical
linewidth versus temperature data for a second device. For the dataset with blue
squares a second cryostat window at 30 K was not in place, hence exposing the sam-
ple to thermal radiation from the outer window at room temperature. The solid and
dashed black lines are fits with a model that assumes a constant Lorentzian intrinsic
linewidth κ convolved with a Gaussian with a width LG that depends on

√
T . The

asymptotes (straight grey lines) of the fit functions allow us to extract κ and the op-
tomechanical coupling rates g0,i for the two mechanical modes (i = 1, 2). Extracted
values are shown in the figure. We assign the discrepancy in extracted values of κ to
bad thermalisation of the sample in the case where the inner window was not in place.

shows transduced mechanical motion as a function of the incident optical power,
with the laser on-resonance with the cavity and while the device was cooled to
3 K. The data was corrected for the local oscillator power, which was mostly
kept constant and did not vary by more than a factor 10. At higher powers
(near 100 nW), fluctuations in the centre frequency and shape of the peak could
be observed (similar to the effects shown off-resonance in Fig. 5 in the main
text), however the peak area still follows the linear dependence as a function of
the optical power incident at the structure. This shows that for all probe powers
used here, there is no significant heating due to the incident laser light.

Supplementary Note 2
Characterisation of a second device and estima-
tion of thermalisation

The data labelled as “device 2” were taken on a sample with a slightly different
design, which did not include the double-period modulation to increase the
outcoupling, as well as a different shape of the holes. The optical linewidth as
a function of temperature for this device is shown in Supplementary Figure 33,
in two separate data sets. The data set shown by blue squares was taken with
only one window in the cryostat, which was at room temperature, such that the
sample was not shielded from thermal radiation. The other dataset was taken
with the second window (cooled to around 50 K) in place. Therefore the sample
temperature for the blue dataset was most likely higher than the thermometer
temperature, which we used to plot and fit these data. Although this leads
to a relatively large difference in the fitted optical loss rate κ, both datasets
yield very similar coupling rates g0, since at high temperatures the sample is
well thermalised. We note that the different estimate of κ in the absence of
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the cold window is of course the direct result of the fact that the nanobeam
temperature is larger than that of the nearby thermometer (which is plotted
on the horizontal axis of Supplementary Figure 33). Comparing the solid and
dashed curves shows that the temperature is raised by ∼10 degrees from the
base temperature. Since this temperature rise can be related to the presence of
the nearby 300 K window, we can now estimate the rise that is expected due to
the ∼ 50 K cold window that is in place during the measurements reported in
the main text. Assuming a ∝ T 4 dependence of heat transfer rates results in an
expected temperature rise of ∼ 0.1 K. This shows that the nanobeams are very
likely thermalised well down to the lowest cryostat temperatures. We finally
remark that it is not straightforward in our case to verify thermalisation using
a phase modulation calibration, as described by Gorodetsky and coworkers22:
The strong intrinsic cavity frequency modulation means that such a calibration
tone will inevitably mix with the mechanically-induced modulations, such that
its magnitude is strongly altered and in fact itself depends on temperature.

Supplementary Note 3
Quadratic displacement measurements

The signal-to-noise ratio (SNR) of a quadratic displacement measurement, in
the regime where the order-by-order approximation is valid, can be found by
considering Eq. 2 in the main text, and assuming the measurement is shot-noise
limited. If the optical power in the reference arm is much larger than in the
signal arm of the interferometer (PLO � Pin), the power spectral density due
to the optical shot noise is given by SSN

PP = ~ωcPLOh
′, with h′ quantifying the

measurement efficiency for the local oscillator light (that is, losses between the
homodyne beamsplitter and the detector, and the quantum efficiency of the
detector). The band power at 2Ωm due to thermal mechanical fluctuations is
given by Eq. 2 in the main text, with k = 2 and 〈δω2〉 = 2nthg

2
0 , leading to

〈P 2〉2Ωm = 512PinPLOhη
2
(g0

κ

)4

n2
th, (1)

where we also substituted A2 = 8PinPLOhη
2, where h accounts for the finite

measurement efficiency for the signal beam (Supplementary Note 44). The power
spectral density will show a Lorentzian peak with linewidth 2Γ at the frequency
2Ωm, which means its peak value is related to the band power (area under the
peak) as Smax

PP = 〈P 2〉2Ωm
/2Γ. Finally, we take the signal-to-noise ratio

SNR ≡ Smax
PP

SSN
PP

= 256
Pinξη

2

~ωcΓ

(g0

κ

)4

n2
th, (2)

where we have defined ξ ≡ h/h′. We set SNR to 1 to find the imprecision in
terms of a phonon number nimp, leading to

1

nimp
= 16

(g0

κ

)2

η

√
Pinξ

~ωcΓ
. (3)

Supplementary Figure 44 shows additional data for the quadratic measure-
ment presented in the main text. The top panel shows the peak around the
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Supplementary Figure 4 | Selective linear and quadratic measurement. (a)
Spectra showing the first and second order transduction obtained simultaneously, as a
function of the piezo mirror position. (b) Maximum and minimum linear and quadratic
transduction at different settings of the homodyne phase, for the fundamental fre-
quencies f1 and f2 as well as all second-order peaks. Red (blue) data points: homo-
dyne phase set to maximize linear (quadratic) transduction; black solid lines show
Lorentzian fits to the peaks. Grey data points were taken with no incident optical
power in the signal arm. For these measurements, the sample was at 3 K, and incident
optical power was 12.8 nW.

fundamental frequency decrease at the same piezo mirror position where the
peaks at twice the frequency are strongest, further confirming the ability to
suppress the linear measurement while performing the quadratic measurement.
The bottom panel shows the linear and quadratic measurements at optimum
positions of the piezo mirror for both fundamental frequencies and all 4 second-
order combinations.

Supplementary Note 4
Coupling and measurement efficiency

Supplementary Figure 55 shows the fitted centre frequency of the mechanical res-
onance f1 at 3 K with Pin = 20.6 nW, corresponding to the spectrogram shown
in Fig. 5a in the main text. Fitting the change in frequency as a function of
the optical detuning with the function describing the optical spring effect in
the bad-cavity limit33;11 provides us with an estimate of the incoupling efficiency
η. We measure the optical power Pin before the objective lens, so aside from
polarisation mismatch and mode overlap with a Gaussian beam, η also includes
transmission losses from the (anti-reflection coated) objective lens and 2 (un-
coated) cryostat windows. The average over 5 measurements at different input
power yielded a coupling efficiency η = 1.3 %, with a standard deviation of
0.3 %.

This analysis ignores the effects of the large thermal fluctuations, which as
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Supplementary Figure 5 | Optical spring effect at low temperature. Fitted
centre frequency of the mechanical resonance f1 with the structure at 3 K and Pin =
20.6 nW, as a function of the laser frequency (corresponding to the data set shown
in Fig. 5a in the main text). The solid line shows a fit of the data according to the
linearised model for the optical spring effect, where the magnitude of the effect depends
on the incoupling efficiency η. The extracted value is shown in the figure.

we show in the main text broadens and reduces the strength of the optical spring
effect. This means the obtained coupling efficiency provides a lower limit for the
actual coupling efficiency. However, the numerical model we used to generate
the simulated spectra in Fig. 5 in the main text shows that the fluctuations
at 3 K mainly broaden the mechanical spectra but do not yet lead to strong
reduction in the strength of the optical spring effect.

In order to characterise the full measurement efficiency ζ = hη, we also
need to consider the quantum efficiency of our homodyne detection (h). This
includes mainly the overlap of the signal and local oscillator beams (∼ 40 %
in the measurements presented), and the quantum efficiency of our photodiode
(∼ 80 %). We also lose some photons via losses in the optical path and by using
a variable aperture to balance the powers reaching the two photodiodes of our
balanced photodetector. Overall, we estimate h ≈ 25 % in experiments in this
paper. We note that we did not try extensively to optimise h, and we expect it
could be improved significantly with modest effort. This would be essential for
the feedback schemes mentioned in the main text.

Supplementary Note 5
Radiation pressure force in a cavity with large
thermal fluctuations

We express the radiation pressure force in the cavity as

Frad =
~(∂ωc/∂x)nmax

c

1 + u2
, (4)

where u ≡ 2
κ (∆ + (∂ωc/∂x)x) and nmax

c is the maximum number of photons
in the cavity when it is driven at resonance. We assume the resonator moves
harmonically: x(t) = x0 sin Ωt. This results in a time-dependent normalized
detuning u(t) = u(∆) + u0 sin Ωt, where u0 = 2(∂ωc/∂x)x0/κ.

Given an amplitude x0, we extract the first Fourier coefficient of the force
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Supplementary Figure 6 | Mechanical linewidth. Fitted mechanical linewidth as
a function of laser frequency at (a) 3 K and (b) 295 K, corresponding to the detuning
sweeps shown in the main text in Fig. 5a & d. The solid horizontal lines show the
median value of the fitted linewidth, which was used as the intrinsic linewidth for the
simulated spectrograms shown in Fig. 5b & e in the main text.

(at the resulting harmonic frequency Ω):

arad
1 =

Ω

π

2π/Ω∫
0

Frad(t′) sin Ωt′dt′. (5)

In analogy with the mechanical restoring force, we can calculate an effective
spring constant from the Fourier coefficient: with F = −kx and x(t) = x0 sin Ωt,
F =

∑∞
n=1 an sinnΩt implies that a1 = −kx0.

Finally, a correction on the spring constant results in a correction on the
frequency Ω:

Ω =

√
k + krad

m
=

√
k

m

√
1 +

krad

k
, (6)

which we can approximate using
√

1 + x ≈ 1 + x/2 + . . .:

Ω ≈
√
k

m
(1 +

krad

2k
), (7)

therefore

δΩ ≈
√
k

m

krad

2k
=

krad

2mΩ
. (8)

To obtain the results presented in Fig. 5 in the main text, we perform
this calculation for 104 amplitudes x0. These amplitudes are sampled from a
Rayleigh distribution, which describes the thermal motion (equivalently, we take√
x2

1 + x2
2 with x1, x2 independently sampled from a normal distribution). The

mean amplitude is set such that the variance of u corresponds to the total
variance we expect from both mechanical modes, using the measured values of
κ, g0,i,Ωm,i and the temperature. To generate spectra that can be compared to
the experimental data, we then average together Lorentzian lineshapes with cen-
tre frequencies given by the resulting set of frequency shifts. Since the mechanical
linewidth changes with temperature, we choose the widths of these individual
Lorentzian peaks based on the median value of the measured linewidth.

As Supplementary Figure 66 shows, this is a good approximation of the in-
trinsic mechanical linewidth, which we measure for large detuning.
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