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We demonstrate an optomechanical platform where optical mode conversion mediated by mechanical
motion enables the arbitrary tailoring of polarization states of propagating light fields. Optomechanical
interactions are realized in a Fabry-Pérot resonator, which naturally supports two polarization-degenerate
states while an optical control field induces rotational symmetry breaking. Applying such principles, the
entire Poincaré sphere is spanned by just optical control of the driving field, realizing reciprocal and
nonreciprocal optomechanically induced birefringence for linearly polarized and circularly polarized
control driving. A straightforward extension of this setup also enables all-optical tunable isolation and
circulation. Our findings open new avenues to exploit optomechanics for the arbitrary manipulation of light
polarization.
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The generation of arbitrary light polarization states is of
major fundamental and technological relevance in non-
linear and quantum optics [1], communication networks
[2], and microscopy [3,4]. Reciprocal and nonreciprocal
polarization control is conventionally attained in bulk
optics by wave plates and Faraday rotators, respectively,
which rely on anisotropic or magnetically biased materials
to induce birefringence. Both effects are intrinsically weak
in bulk materials, requiring sizable driving fields and
structures larger than the wavelength. More recently,
engineered metasurfaces [5–8] have been developed to
overcome these limitations across the electromagnetic
spectrum, with tunability enabled by both electric [9]
and magnetic [10,11] biasing. Polarization rotation is
nevertheless limited in these structures. While a few plat-
forms [12,13] have been recently proposed to provide
complete tunability of the polarization state in a compact
structure, they are characterized by complex implementa-
tions and modulation schemes.
Optomechanical technologies exploit sharp photonic

resonances coupled to mechanical modes to enable a
new degree of control over light, examples of which are
the swapping of photons into phonons and back [14–17]
and optomechanically induced transparency [18,19]. In this
context, multimode systems have been recognized for their
potential to convert photons from one cavity mode to
another one via mechanical excitations. This additional
degree of control over light allows quantum and classical
applications, such as wavelength conversion between
two distant optical frequencies [20–23] that can feature
adiabatic quantum state transfer [24,25], nondemolition

measurements [26], entanglement generation [27–29],
nonreciprocal transport, and optical routing [30–34]. For
the large part, these proposals have been based on manipu-
lating the scalar properties of photons, while their vector
nature has been only recently pinpointed [35–37].
In this Letter, we demonstrate how optomechanically

induced mode conversion enables the arbitrary control of
optical polarization. For simplicity and clarity of presen-
tation, we focus on a canonical optomechanical system,
consisting of a high-Q planar Fabry-Pérot resonator with a
movable mirror, as is used in many experiments (see
Fig. 1), but the analysis is valid for any system hosting
degenerate modes of orthogonal polarization that are both
coupled to a mechanical resonator mode [36,38–48].
Similar concepts may be envisioned in a broad class of
2D and 3D geometries. Optical pumping in a particular
polarization state breaks rotational symmetry and induces a
tunable linear interaction between different polarizations.
In contrast to static radiation-pressure-induced chirality in
prepatterned metasurfaces [49], our approach exploits
dynamical backaction effects and coherent mode conver-
sion for fully tunable and efficient polarization control.
Indeed, by bringing ideas of coherent polarization manipu-
lation via electromagnetically induced transparency in
atoms [50] into the realm of linear optomechanics, we
allow a rich regime of reciprocal and nonreciprocal
interactions permitting tunable all-optical isolation and
circulation.
Our model includes two degenerate electromagnetic

modes with equal frequencies ωcav, decay rates κ, and
annihilation operators âT ¼ ðâH; âVÞ (H and V label
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horizontal and vertical polarization axes, respectively),
interacting with a localized mechanical mode, with fre-
quency Ωm, damping constant Γm, and annihilation oper-
ator b̂. We first consider the end-coupled geometry shown
in Fig. 1, consisting of a highly reflecting movable mirror
that supports a mechanical mode and a partially transparent
input-output port. The resonator, assumed to satisfy the
resolved sideband condition (κ ≪ Ωm), is driven by a red-
detuned control field, characterized by the steady-state
Jones vector ᾱT ¼ ðᾱH; ᾱVÞ at a frequency ωL ¼ Δ̃þ ω̃cav.
Here ω̃cav includes a static blueshift proportional to the
average radiation pressure force F̄ ∝ g0jᾱj2. In a frame
rotating at red-detuned frequency ωL (Δ̃ ¼ −Ωm), the
photons associated with the “probe” fields in sidebands
of the stronger control field, denoted by δâ ≃ â − ᾱ, excite
maximally the mechanical mode. The coherent dynamics is
thus governed by the linearized Hamiltonian within the
rotating-wave approximation (setting ℏ ¼ 1),

Ĥeff ¼ −Δ̃δâ†δâþΩmb̂
†b̂ − g0ðᾱ · δâ†b̂þ H:c:Þ; ð1Þ

where g0 denotes the vacuum optomechanical coupling.
In a way similar to conversion between photonic modes with
different wavelengths [21–23], the synthetic optomechanical

interaction in Eq. (1) implements a complex parametric
coupling between polarization-orthogonal photons that are
degenerate. Essentially, a photon in mode H can be annihi-
lated to produce a phonon in themechanical resonator, which
can subsequently be annihilated to produce a photon inmode
V (and vice versa). As we demonstrate below, this enables
full spanning of the Poincaré sphere (PS) with the output
reflected from a single resonator.
To characterize our system, we obtain the semiclassical

equations of motion derived from the coherent evolution
Eq. (1) after including dissipation, which for the photonic
modes are split into in-coupling and intrinsic loss rates,
fκc; κig (κ ¼ κc þ κi). We define the probe frequency ω
in the rotating frame centered on ωL [see Fig. 1(c)]. The
solution for b̂ðωÞ is readily found in Fourier space and
reinserted into the photonic evolution, yielding the linear
system iωδâðωÞ ¼ iMðᾱÞδâðωÞ þ ffiffiffiffiffi

κc
p

sin, where sin con-
tains probe modes. The 2 × 2 scattering matrix linking
input to output modes (sout ¼ Ssin) reads [51]

Sðω; ᾱÞ ¼ −1þ iκc½MðᾱÞ þ ω1�−1; ð2Þ
where direct reflection is included via the first term and
1 ¼ diagð1; 1Þ. In the following, we employ the coopera-
tivity C ¼ 4g20jᾱj2=ðΓmκÞ as a relevant figure of merit for
the optomechanical system. Further details of the derivation
and the resulting S matrix can be found in Supplemental
Material [52].
We explore first the case of linear incident polarization

with a finite angle with respect to a linearly polarized
control field. The reflectivity spectra for the co- and cross-
polarized components of sinkeH, given by SHH and SVH,
respectively, are displayed in Figs. 1(d) and 1(e) for the case
ᾱke45° ¼ ðeH þ eVÞ=

ffiffiffi

2
p

. The control field thus explicitly
breaks rotational symmetry and produces an optomechani-
cally induced mixture of otherwise uncoupled orthogonal
polarizations, channeled by a narrow-band mechanical
resonance [with effective linewidth ðC þ 1ÞΓm]. This phe-
nomenon, emulating a power-controlled birefringence, is
characterized by the resonant scattering parameters which
depend only on the mechanics via C:

SHHðΩm; ᾱke45°Þ ¼
κc − ðC þ 1Þκi
ðκc þ κiÞðC þ 1Þ ; ð3aÞ

SVHðΩm; ᾱke45°Þ ¼
Cκc

ðκc þ κiÞðC þ 1Þ : ð3bÞ

With an increasing driving intensity, the peak and the
bandwidth of the conversion are augmented. This effi-
ciency saturates in the large cooperativity limit (C ≫ 1) at
jSVHj2 ≃ κ2c=ðκc þ κiÞ2 and becomes unitary (jSHHj2 ¼ 0;
jSVHj2 ¼ 1) for negligible optical losses κi ≪ κc. A critical
aspect in maximizing the conversion efficiency of this
process at larger powers is the fulfillment of the sideband-
resolved condition, which for fixed detuning ultimately

FIG. 1. (a),(b) Sketch of the proposed geometry. A pump field
(red) induces coupling between two degenerate cavity modes
with orthogonal polarizations, altering the polarization state of a
probe (blue) upon reflection (black). (c) Schematic of the relevant
frequencies and resonances. A red-detuned control field (ωL)
couples to a weak probe signal near the cavity resonance (ωcav)
through a mechanical mode (Ωm). Lower panels show the
reflectivity spectra for H-polarized input into the H and V output
channels. The output is reciprocal (SHV ¼ SVH) for a linearly
polarized pump, or nonreciprocal for a circularly polarized pump
(SHV ¼ −SVH), inducing birefringence and Faraday rotation,
respectively. The amplitudes of the co- and cross-polarized
reflected fields are the same for both pumps, so (d),(e) apply
to both (a),(b). For these and later plots, Γm ¼ Ωm=5000 and
κ ¼ κc ¼ Ωm=10.
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limits the bandwidth via ω̃cav − ωcav < κ. The cavity line-
width itself also imposes the bound jω − ω̃cavj < κ.
As revealed by the interaction Hamiltonian in Eq. (1),

the mechanical mode selectively couples with the super-
position of photonic modes ᾱ · δâ. The conversion into
orthogonal modes ∼ᾱ0δâ, where hᾱ; ᾱ0i ¼ 0, is then
unaffected by optomechanics, and only a shift in the cavity
resonance is expected. For the same control field
assumption as above, the scattering matrix elements for
parallel and orthogonal conversion channels,

S45°HðΩm; ᾱke45°Þ ¼ −
ðC − 1Þκc þ ðC þ 1Þκi

ffiffiffi

2
p ðκc þ κiÞðC þ 1Þ ; ð4aÞ

S−45°HðΩm; ᾱke45°Þ ¼
κc − κi
ffiffiffi

2
p ðκc þ κiÞ

; ð4bÞ

demonstrate this exact phenomena. Only the probe com-
ponent copolarized with the pump exhibits optomechani-
cally induced transparency or absorption, depending on κi,
recognized in Ref. [35]. In the limit of low loss and high C,
this component undergoes a π phase shift, resulting in
strong polarization conversion.
In our system, the conversion of polarization states not

only depends on the control intensities, determining the
absolute magnitude of the coupling constant in Eq. (1),
but is also controlled by the pump phases argðᾱH;VÞ. The
potential of this phase manipulation is uncovered by
considering the case of right-handed and left-handed
circular polarizations (RHCP and LHCP, respectively),
given by fe↻ ¼ ðeH þ ieVÞ=

ffiffiffi

2
p

; e�↺ ¼ e↻g independent
of the propagation direction to avoid confusion upon
reflection. With a fixed gauge argðᾱHᾱ�VÞ ¼ −π=2, it is
straightforward to check that the conversion efficiencies of
the H-input probe into the circular bases are equivalent to

the conversion into the �45° bases under linear pumps
[Eq. (4)], i.e., S↻Hð↺HÞðᾱke↻Þ ¼ S45°Hð−45°HÞðᾱke45°Þ.
Hence, by tailoring the static radiation pressure in a

Fabry-Perót cavity, optomechanical interactions permit us
to leverage independently the amplitude and phase of the
four S-matrix elements, enabling arbitrary polarization
control. The relations fulfilled by conversion efficiencies
for parallel or orthogonal modes with respect to the control
field suggest a geometrical interpretation for the parametric
action of the S matrix. Namely, at large cooperativities, a
basis-independent expression for the resonant S matrix
shows conversion insensitive to the mechanical degree
of freedom (d.o.f.) (encoded in Γm; g0), namely,
SðΩm; ᾱÞsin ≃ −sin þ 2κcðsin − heᾱ; sinieᾱÞ=κ, with the
control polarization vector eᾱ ¼ ᾱ=jᾱj playing the role
of a (complex) reflection axis for sin (see [52] for further
details). To gain a deeper insight, we use the natural
representation of polarization states in the Poincaré sphere
that displays the Stokes parameters ðS0; S1; S2; S3Þ, repre-
senting the degree of polarization along the bases
feH; eVg; feþ45; e−45g, and fe↺; e↻g [56]. Setting Sin0 ¼
1 at the PS surface, the input Jones vector sin ¼
ðcosðθin=2Þ; eiφin sinðθin=2ÞÞ is thus represented as the
Stokes 3-vector vin ¼ ðcosðθinÞ sinðφinÞ; sinðθinÞ sinðφinÞ;
cosðφinÞÞ, while the S mapping induces a reflection of
vin over the parametric axis along the control vector vᾱ
for an overcoupled resonator (κi ≪ κc), namely, vout ≃
2ðvᾱ · vinÞvᾱ − vin [57]. The whole surface of the PS can
therefore be spanned by rotating eᾱ [see Fig. 2(a)].
We next explore how driving frequencies can be

exploited as an additional d.o.f. in the conversion process,
beyond constraints imposed by the active control of driving
polarization. For instance, when the probe frequency
matches the optical resonance, a finite detuning of the
control field (denoted by δ ¼ Ωm − ωL) alters the response
of the signal component parallel to the pump. To see to

FIG. 2. (a) Illustration of the geometrical transformation induced in the PS by the scattering matrix in Eq. (2). (b)–(d) Stokes
parameters forH-polarized incident light and varying input frequency with C ¼ 1 (dashed lines) and C ¼ 50 (solid lines) when the pump
is linearly polarized at 45° (b) or right-handed circularly polarized (c). The surface of the sphere can be reached in the limit C ≫ 1, but,
even at the moderate levels shown here, the output state can nearly be in five of the six Stokes basis states, at the expense of photon
losses. (d) Manifolds showing output states for varying cooperativity and detuning [δ ∈ ð−∞;∞Þ] for a linearly polarized pump along
45° (left) and right-handed circular polarization (right). The paths inside the PS for fixed C ¼ f1; 50g are mapped out, with different
pump power and polarization, corresponding to (b) and (c). For (b)–(d), other parameters are chosen according to Fig. 1.
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what extent the polarization is affected, Fig. 2(b) shows the
Stokes parameters for the reflection from a cavity probed
by H-polarized light, with an LP control field along 45°.
Recovering previous results, we observe full dissipation of
the copolarized probe component into the mechanical mode
at resonance (δ ¼ 0) for an overcoupled resonator (κi ≪ κc)
driven at moderate cooperativities (C ∼ 1). The system then
behaves as a conventional polarizing mirror, reflecting
only light cross-polarized to the control. Similar physics
is observed for an RHCP control in Fig. 2(c), where the
reflection is purely LHCP (S3 < 0). Efficient conversion
into the polarization state eV , sitting at S1 ¼ −1, is
recovered at C ≫ 1 for both cases. For large cooperativity,
the component parallel to the pump is entirely reflected,
but with a phase that spans from 0 to 2π relative to the
orthogonal component as the detuning is varied (see [52]),
resulting in a conversion into elliptic polarization
(S1;2;3 ≠ 0). We note here that the conservation of energy
and angular momentum for modes undergoing conversion
must bemet by slight changes to the control beam, which we
have neglected in the linearized, strong pumpapproximation.
Furthermore, within the geometrical argument presented

in Fig. 2(a), finite detuning results in output Stokes vectors
with a component orthogonal to the control plane leading to
extra control over the output polarization beyond resonant
conversion. In order to benchmark this approach, we trace
in Fig. 2(d) the manifold of reachable Stokes parameters on
the PS as δ is swept across the range δ ∈ ð−∞;∞Þ and the
cooperativity is increased above zero, i.e., C > 0, for the
45° and RHCP control polarizations (left or right panels).
The loci of output states form bowl-shaped surfaces that
emerge from the zero-conversion point at S1 ¼ 1 (state eH)
for C ¼ 0 and infiltrate the PS for intermediate C. In
particular, at a fixed cooperativity, the output states follow
circular orbits with radii growing with C. The output
reaches the state eV at the (antipodal) location S1 ¼ −1,
obtained by reflecting the input across the parametric
control plane in the limit C ≫ 1 and resonance (δ ¼ 0),
recovering previous results. From a global perspective, the
Stokes vector of a strong control field serves as an axis of
rotation for an arbitrary probe field as the frequency is

varied, with a maximum 180° rotation for δ ¼ 0, as in
Fig. 2(a). In this fashion, it is feasible to reach four out of
the six poles of the PS along the axes S1;2;3 by just varying
detuning. An extra fifth pole of the PS is reached at the
expense of losses in the polarizer operation. This demon-
strates the potential of this system as a reconfigurable
efficient polarization generator.
Interestingly, finite ellipticity of the control field induces

conversion processes that are nonreciprocal in nature. In the
case of circular polarization, the scattering matrix is
antisymmetric, signaling the breaking of Lorentz reciproc-
ity (S ¼ −ST ≠ ST ; see Supplemental Material [52]).
Antisymmetry of the scattering matrix is inherited from
the complex phase argðᾱ�HᾱVÞ imprinted by the control field
at the level of the interaction Hamiltonian in Eq. (1).
Such features show time-reversal symmetry breaking and
(nonreciprocal) Faraday rotation in the system and result in
the inability to relate forward or backward scattering
transformations [57].
Phase nonreciprocity can be readily exploited to build

devices displaying unconventional photon routing [58],
such as an optical isolator, where the off-diagonal trans-
mission coefficients have unequal amplitudes. A possible
approach consists in placing a suitably oriented quarter-
wave plate (QWP) after the output mirror of a CP-driven
resonator (without loss of generality RHCP) in addition to a
polarizing beam splitter (PBS), forming the ports sketched
in Fig. 3(a). Then, an H-polarized input probe (port 1) is
reflected in the PBS and acquires an RHCP component
upon passing the QWP. This component yields a
V-polarized output (port 2), after a second pass through
the QWP, with a transmission level tunable by interactions
with the mechanical mode. Following a similar logic, a
V-polarized probe in port 2 is insensitive to the mechanics
and has a fixed transmission to port 1. In this system,
losses, inherently required by a linear two-port isolator
[59], are found in preferential absorption of one of the CP
components.
This is confirmed by a quantitative analysis of the device

action on the input, characterized by Siso ¼ AQWPSAQWP,
where AQWP ¼ ð1= ffiffiffi

2
p Þð1þ iσxÞ and S follows from

FIG. 3. (a) Schematic for the realization of a free-space optical isolator. (b) Transmission jSVHj2 for the overcoupled case, where
jSHV j ≃ 1. Good isolation occurs for C ≃ 1 and over the mechanical linewidth, where losses through the mechanical mode can occur.
(c) Transmission jSVHj2 for the critically coupled case. With larger pumping, the transmission amplitude and bandwidth both increase.
(d) Schematic for a potential implementation as a four-port circulator. For (b),(c), other parameters are chosen according to Fig. 1.
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Eq. (2). For illustrative purposes, we consider two limiting
scenarios, in which the optical cavity is either (i) over-
coupled (κi ≪ κc) or (ii) critically coupled (κi ¼ κc) [51].
If the control field in the resonator is set to RHCP, then in
the former case, the RHCP probe can be absorbed through
the mechanical modes with moderate cooperativities,
leading to vanishing reflected output, i.e., SVH ≃ 0 [see
Fig. 3(b)]. Meanwhile, the LHCP light will not interact
with the mechanical mode and will be reflected indepen-
dent of cooperativity (jSHV j ≃ 1). Efficient isolation occurs
for C ¼ 1 over a narrow bandwidth limited by the
mechanical resonance, Γm. For critical coupling, light is
absorbed without interacting with the mechanical mode for
low C [S ≃ 0 in Fig. 3(c)]. In this case, SVH exhibits
features reminiscent from optomechanically induced trans-
parency, with an increasing efficiency and bandwidth for
large cooperativities, similar to polarization conversion
in the overcoupled cavity displayed in Fig. 1(d), while
SHV ≃ 0 regardless of the pump power. Arbitrary contri-
butions of κc and κi yield a behavior interpolating between
the two limits above.
If the reflectivity of the second mirror is decreased below

unity, so light entering in the resonator can outcouple to
the other side, the addition of the same QWP-PBS plate to
this side, as sketched in Fig. 3(c), permits nonreciprocal
light circulation between a port i and a port iþ 1, for
i ¼ f1; 2; 3; 4g. This setup is precisely mappable into an
optomechanically assisted four-port optical circulator [31].
A benchmark of this device can be found in Supplemental
Material [52].
In conclusion, we have demonstrated how a minimal

setup, consisting of an optomechanical cavity in the
resolved-sideband regime, is a versatile platform for all-
optical polarization conversion. Parametric photon-phonon
interactions induce birefringence for a probe beam in a
rotationally symmetric system. Our results then highlight
how the freedom in both vectorial (polarization) and scalar
(intensity and frequency) d.o.f. in the incoming fields can
be exploited to achieve arbitrary polarization states in
reflection. In particular, we have shown how birefringence
is expected for linearly polarized control beams, and,
similarly, nonreciprocal Faraday rotation can be realized
for circular polarization. Finally, the design of an optical
isolator based upon this configuration is presented, show-
ing the requirements and tradeoffs that would exist in a
realistic implementation of such a system. These concepts
may be straightforwardly extended to other settings sup-
porting degenerate optomechanical resonances, including
potentially integrated platforms, or by exploiting stimulated
Brillouin scattering in polarization-degenerate waveguides
or fibers [60,61]. Even more opportunities might arise
when many mechanical modes are engaged, allowing more
complex polarization manipulations, or via optomechanical
amplification at Δ̃ ¼ Ωm, boosting conversion efficiency and
enabling directional amplification. Our findings altogether

unlock a new potential of optomechanics in manipulating
light fields by interfacing with mechanical d.o.f., enabling
unusual reciprocal and nonreciprocal phenomena for polari-
zation conversion and manipulation.
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